Chemistry in Confined Spaces

7.4 Aº Window

13.4 Aº Supercage diameter

Zeolite X: M₈₆[(AlO₂)₈₆(SiO₂)₁₀₆]. 264H₂O Zeolite Y: M₅₆[(AlO₂)₅₆(SiO₂)₁₃₆]. 250H₂O

Alkali Ion Controlled Photochemistry

Alkali Ion-Organic Interactions

- Alkali Ion-Organic Very Weak Interaction (Spin-Orbit coupling)
- Alkali Ion-Carbonyl Dipolar Interaction
- Alkali Ion-π (Alkenes) Quadrupolar Interaction
- Alkali Ion-π (Aromatics) Quadrupolar Interaction

Alkali Ion Effect: Electron Spin Inversion Heavy Cations Enhance S₁ to T₁ Crossing

Ability of zeolite supercage to induce spin-orbit coupling depends on the SOC of the alkali ion

Atom	Ionic Radius of the Cation (Å)	Spin-Orbit Coupling ζ cm ⁻¹
Li	0.86 (+)	0.23
Na	1.12	11.5
Κ	1.44	38
Rb	1.58	160
Cs	1.84	370
ΤΙ	1.40	3410
Pb	1.33 (2+)	5089

Whether the Heavy Alkali Ion Could Influence the Intersystem Crossing Depends on the Electronic Configurations of the States Involved (El Sayed's Rule)

Emission Spectra of Naphthalene Included in MY Zeolites Dependence on the Alkali Ion: ππ*–ππ* Crossing

External Heavy Atom Effect on Triplet Decay Rates of Naphthalene

Heavy Atom Effect is Specific: ODMR Studies

Optical Detection of Magnetic Resonance (ODMR) -

Triplet Sub-Level Specific Kinetics at 1.2 °K

- Total decay constants from each sub-level
- Relative radiative rates from each sub-level
- Relative intersystem crossing rates to each sub-level
- Slow Passage ODMR Transitions

· • •					۰.																			
						X																		
							٠,																	
							λ.																	
					1	1		17		٠ <u>.</u>	\mathbf{r}_{i}													
								A																
								. 1	۱.															
		÷.	÷.	÷.		÷.	÷.		×.		÷.	÷.			÷.	÷.						÷.		
		÷.	÷.	÷.	÷.,	÷.	÷.	÷.,	1	÷.	÷.	÷.	÷.	÷.	÷.	÷.	÷.,	÷.,	÷.,	÷.,	÷.,	÷.	÷.,	÷.,
		•	÷.	÷.		÷.	÷.		÷.		÷.	÷.	÷.	÷.		÷.						÷.		÷.,
		•	÷.	÷.		÷.	÷.		÷.		÷.	÷.	÷.	÷.		÷.						÷.		÷.,
			1	1	•	1	1	•	1	1					1	1	•	•	•	•	•	1	•	•
		•	•	•	•	1	•	•	•	1	•	•			•	•	•	•	•	•	•	1	•	÷.,
			1		÷.,	1		÷.,	1	1					1	1	÷.,	÷.,	÷.,	÷.,	÷.,	1		1
1.1	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	Z	•
1.1		•	1	•	•	•	•	•	1	1	•	•				1	•	•	•	•	•	•	•	1
1.1		1			•	1		•		1					1		•	•	•	•	•	1	•	1
1.1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1.1				•	•	•	•	•		•	•	•					•	•	•	•	•	•	•	÷.,
1.1	•	•	÷	•	•	•	•	•	÷	÷	•	•	÷	÷		÷	•	•	•	•	•	•	•	•
	•	•	÷	•	•	÷	•	•	÷	÷	•	•	•	•	•	÷	•	•	•	•	•	÷	•	•
·V	•	•	÷	•	٠	÷	•	٠	÷	÷	٠	٠	•	•	•	÷	٠	٠	٠	٠	٠	÷	•	•
2																								

Phosphorescence From Diphenyl Polyenes: Unique to Zeolites

Phosphorescence from Azo Compounds in TIY at 77 K $n\pi^*$ $n\pi^*$ crossing

Photoproduct Distribution Influenced by Alkali Ions

Photoproduct Distribution Influenced by Alkali Ions

Intersystem Crossing in Diradicals Influenced by Alkali Ions

Intersystem Crossing in Diradicals is also Influenced by Alkali Ions

Alkali Ion Controlled Photochemistry

Alkali Ion-Organic Interactions

- Alkali Ion-Organic Very Weak Interaction (Spin-Orbit coupling)
- Alkali Ion-Carbonyl Dipolar Interaction
- Alkali Ion-π (Alkenes) Quadrupolar Interaction
- Alkali Ion-π (Aromatics) Quadrupolar Interaction

Alkali Ion Effect Induced State Switching

Binding Modes and Binding Affinities of Alkali Ions to Acetophenones

Acetophenone Li⁺ bound to the phenyl ring

BA: 37.77 kcal/mole

4' -Methoxyacetophenone Li⁺ bound to carbonyl

BA: 59.74 kcal/mole

4' -Methoxyacetophenone Li⁺ bound to the phenyl ring

BA: 40.35 kcal/mole

4' -Methoxyacetophenone Li⁺ bound to methoxy

BA: 38.46 kcal/mole

TITAN - ROB3LYP 6-31G*

¹³C MAS NMR Studies of Acetophenone (¹³C=O) Adsorbed in MY Zeolite

¹H ¹³C CP MAS

Orbital diagram - Nature of triplet excited state (T₁) - Acetophenone (TITAN – ROB3LYP 6-31G*)

 $E_{S-T} = 71.60 \text{ kcal/mol}$

Orbital diagram – Nature of triplet excited state (T₁) Acetophenone – Li⁺ complex (C=O) (TITAN – ROB3LYP 6-31G*)

Similar results were obtained with Na⁺

 $E_{S-T} = 69.09 \text{ kcal/mol}$

Acetophenone and Acetophenone-Li⁺ Complex

Gaussian - CIS/6-31+G* level and TD/6-31+G*

Steady State Emission

Phosphorescence emission spectra of acetophenone and 4' -methoxyacetophenone in methylcyclohexane glass and methanol/ethanol glass at 77°K

Phosphorescence emission spectra of acetophenone and 4' methoxyacetophenone in NaY and CsY at 77°K

Acetophenone Emission Influenced by Zeolite Time Resolved Studies

Triplet Lifetime Dependence on Alkali Ion

Reactivity Change Due to State Switching within Zeolites

Reactivity Change Due to State Switching within Zeolites

Reactivity Change Due to State Switching within Zeolites

Alkali Ion Controlled Photochemistry

Alkali Ion-Organic Interactions

- Alkali Ion-Organic Very Weak Interaction (Spin-Orbit coupling)
- Alkali Ion-Carbonyl Dipolar Interaction
- Alkali Ion-π (Alkenes) Quadrupolar Interaction
- Alkali Ion-π (Aromatics) Quadrupolar Interaction

Theoretical Estimation of Alkali Ion-Olefin Binding Energy

Li+	-26.11 kcal/mol	-26.36 kcal/mol	-51.76 kcal/mol
Na+	-17.43	-17.67	-34.51
K+	-8.91	-9.61	-19.45
Rb+	-7.28	-7.83	-17.57
Cs ⁺	-5.42	-5.84	-10.67

Hartree-Fock method/6-31G*

Cation dependent electron density distribution

Electric Field May Polarize the Olefin

Regioselective Photo-Oxidation

Evidence for Singlet Oxygen Generation within Zeolites—Reaction

Effect of Alkali Ions on Product Selectivity

Cation	Cation radius	2°	3°
Acetonitrile/RB		49	51
LiY / Thionin	0.76 Å	74	26
NaY / Thionin	1.02	74	26
RbY / Thionin	1.52	59	41
CsY / Thionin	1.67	50	50

Effect of Alkali Ions on Product Selectivity

Cation	Cation radius	2°	3°
Acetonitrile /RB		51	49
LiY / Thionin	0.76 Å	95	5
NaY / Thionin	1.02	90	10
RbY / Thionin	1.52	70	30
CsY / Thionin	1.67	55	45

Effect of Alkali Ions on Product Selectivity

Alkali Ion Controlled Photochemistry

Alkali Ion-Organic Interactions

- Alkali Ion-Organic Very Weak Interaction (Spin-Orbit coupling)
- Alkali Ion-Carbonyl Dipolar Interaction
- Alkali Ion-π (Alkenes) Quadrupolar Interaction
- Alkali Ion-π (Aromatics) Quadrupolar Interaction

Computed Interaction Energies (kcal/mole)

Metal ion	M^+ Bz
Li	-43.8
Na	-29.7
K	-16.7
Rb	-14.6
Cs	-11.9

All the values are computed at MP2 level of theory with a 6-31G* basis set for C, H, Li and Na. Hay-Wadt effective core potential with valence functions are employed for the heavier metal ions such as K, Rb and Cs.

Cation-π interaction Variable temperature NMR

Computed Interaction Energies (kcal/mole)

Metal ion /System	M ⁺ Bz	BzM ⁺ Bz	[M ⁺ Bz]Bz
Li	-43.8	-81.1	-6.93
Na	-29.7	-56.2	-5.77
K	-16.7	-32.3	-5.03
Rb	-14.6	-27.7	-4.50
Cs	-11.9	-22.6	-4.19

All the values are computed at MP2 level of theory with a 6-31G* basis set for C, H, Li and Na. Hay-Wadt effective core potential with valence functions are employed for the heavier metal ions such as K, Rb and Cs.

Alkali Ion Controlled Aggregation of Aromatic Molecules

Aggregation of Aromatic Molecules Prompted by Alkali ion-π (Aromatic) Interaction

Computed Interaction Energies (kcal/mole)

Metal ion /System	M ⁺ Bz	BzM ⁺ Bz	<i>cis</i> -DPCM ⁺
Li	-43.8	-81.1	-75.8
Na	-29.7	-56.2	-53.9
K	-16.7	-32.3	-32.6
Rb	-14.6	-27.7	-28.2
Cs	-11.9	-22.6	-22.7

All the values are computed at MP2 level of theory with a 6-31G* basis set for C, H, Li and Na. Hay-Wadt effective core potential with valence functions are employed for the heavier metal ions such as K, Rb and Cs.

¹H NMR

GC

Cation Binding May Influence Excited State Chemistry

Cation Effect (dry condition)...

Alkali ion effect could be switched off by changing the binding site

HF/3-21G* basis set

No Alkali Ion Influenced Cis Enrichment in Amides of Diphenylcyclopropane Carboxylic Acids

Photostationary state cis:trans ratio

Medium	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH2	CH2-CH2
Solution	48:52	50:50	35:65
LiY	12:88	11:89	10:90
NaY	40:60	35:65	21:79
KY	35:65	58:42	38:62
RbY	33:67	55:45	40:60
CsY	55:45	56:44	41:59

Alkali Ion Controlled Photochemistry

Alkali Ion-Organic Interactions Making Use of Multiple Binding

- Alkali Ion-Carbonyl Dipolar Interaction
- Alkali Ion-π (Alkenes) Quadrupolar Interaction
- Alkali Ion-π (Aromatics) Quadrupolar Interaction

Solution

- Acetyl radical (CH₃CO) is detected by IR (2127 cm⁻¹)
- The absorption of CH₃CO radical within NaY is shifted by 285 cm⁻¹ to the blue with respect to the argon matrix value of 1842 cm⁻¹
- Probable structure of CH₃CO radical within NaY is suggested to be

• The CH₃CO radical has a lifetime of \sim 75 µs within NaY

Cations are more than inert fillers

Cation-organic interactions could be used to influence various photochemical and photophysical events

Confined Media

Crystals

Cyclodextrins

DNA

Zeolite

J. Shailaja

Sundar

J. Sivaguru

S. Takagi

A. Pradhan

Sireesha

Manoj

Thanks for financial support

National Science Foundation

WHERE DISCOVERIES BEGIN

U.S. Department of Energy

Science for America's Future