Chiral Photochemistry

1

- Crystals
- Zeolites
- Solution

Chemistry in Confined Spaces

-- a single cupful has enough surface area to cover 20 football fields.

Characteristics of Zeolites

$M_x(AlO_2)_x(SiO_2)_y.z H_2O$

- Microporous solid
- Large surface area
- Well defined large pores
- Channels and cages

Asymmetric Photoreactions Within Chirally Modified Zeolites

Why Chiral Chemistry

Chiral inductor approach

Enantioselective Electrocylization of Tropolones

Chiral induction: Solution vs. Zeolite

Chiral induction: Solution vs. Zeolite

Chiral induction within a chirally modified zeolite

Photoreduction of Aryl alkyl ketones: Generality

Norephedrine-50%ee

Ephedrine - 47%ee

CH3

Pseudoephedrine -43%ee

1,2-Diaminocyclohexane-44%ee

Ephedrine-45%ee

Ephedrine-34%ee

Pseudoephedrine - 30%ee

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content
 - Mechanism of the Reaction
 - Reactive State (S₁ vs T₁)

Enantioselectivity in Photoreactions-Generality

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content
 - Mechanism of the Reaction
 - Reactive State (S₁ vs T₁)

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature and Number of Cation
 - Water Content
 - Mechanism of the Reaction
 - Reactive State (S₁ vs T₁)

Photochemistry of Chiral Amides of 2,6,6-trimethylcyclohexa-2,4-dienone-4-carboxylic acid

Yang Cyclization of Adamantyl Aryl Ketones within Zeolites

LiY	79(B)	65(A)	26(B)	52(B)
NaY	60(B)	79(A)	54(B)	62(B)
KY	31(B)	3(A)	30(B)	4(A)

Chiral Induction Depends on the Alkali Metal Ion

Enantio- and Diastereomeric Excess Depends on the Number of Cations

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content
 - Mechanism of the Reaction
 - Reactive State (S₁ vs T₁)

Role of confined space and effect of water

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content
 - Mechanism of the Reaction
 - Reactive State (S₁ vs T₁)

Asymmetric Photoreactions Within Zeolites

- Modest to Good Chiral Induction
- Chiral Induction Depends on
 - Reaction and Reactant
 - Chiral Inductor and Chiral Auxiliary
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content
 - Mechanism of the Reaction
 - Reactive State ($S_1 vs T_1$)

Diastereoselectivity Dependence on Reactive State

(4-MAP) -OMe

Asymmetric Photoreactions Within Zeolites

Cation is the Key

Chiral Induction Depends on

Nature of the Cation
Number of Cations (Si/Al ratio)
Water Content

Cation binding changes the conformation of the chiral auxiliary

R. C. Dunbar, J. Phys. Chem., 104, 8067 (2000)

Importance of Cation-Chiral Auxiliary Binding: Phenyl vs Cyclohexyl

Importance of Cation-Chiral Auxiliary Binding: Phenyl vs Cyclohexyl

B.E (Na⁺ complex) = -96.89 kcal/mol

B.E (Na⁺ complex) = -85.90 kcal/mol

Gaussian 98 HF/ 3-21G *

Importance of Cation-Chiral Auxiliary Binding: Phenyl vs Cyclohexyl

B.E (Na⁺ complex) = -75.49 kcal/mol

B.E (Na⁺ complex) = -65.32 kcal/mol

Gaussian 98 HF/3-21G *

Role of Cation- π Quadrupolar Interaction

Role of Cation-Carbonyl Dipolar Interaction

Amino acids as chiral auxiliaries : Cation dependent isomer switch

Cation Dependent Diastereomer Switch

de in CH₃CN: 5% LiY: 79% NaY: 60% KY: 31%

Difference in Energy is 2.3 kcal/mol

- $C=O---H_1$ 3.65 A^0
- $C = O H_2 2.65 A^0$

B3LYP/6-31G*

C=O----H₁ 2.49 A^0 C=O---H₂ 3.48 A^0

Difference in Energy is 10.4 kcal/mol

- - $-C=O---H_1$ 3.79 A⁰
 - $-C=O---H_2$ 2.78 A⁰

- C=O-----H₁ 2.55 A^0
- $C=O^{---}H_2$ 3.51 A⁰

Cyclohexyl phenyl ketone with norephedrine in dry NaY zeolite

(+) Norephedrine 68% R R(+)Cyclohexyl benzyl alcohol

(-) Norephedrine 67% S S(-)-Cyclohexyl benzyl alcohol

Reaction inside wet NaY with norephedrine as chiral inductor gives only 2%ee.

Gaussian 98 B3LYP/6-31 G*

Interaction between the ketone, lithium cation and the chiral inductor.

Energy = -1068.4535 a.u.

Energy = -1068.4663 a.u.

Difference in Energy: 8.03 k cal/mol

Gaussian 98 B3LYP/6-31G(d)

Asymmetric Induction within Zeolites

Chemistry in a Confined Space

- Chiral inductor
- Chiral auxiliary
- Chiral auxiliary and Chiral inductor
- Chiral inductor as a reagent (or as a sensitizer)

J. Shailaja

J. Sivaguru

Sireesha

S. Uppili

J. R. Scheffer

N. Arunkumar

A. Joy

Y. Yoshimi

K. Ponchot

T. Shichi

Thanks for financial support

National Science Foundation

WHERE DISCOVERIES BEGIN

U.S. Department of Energy

Science for America's Future