Characteristics of Zeolite

Asymmetric Induction

Chirality in Diphenylcyclopropane Systems.....

V. Ramamurthy, et.al. JACS, 2000, (122), 4815–4816.

BA = 66.83 kcal/mol B3LYP / 6-31G*

Steering the photoisomerization towards the trans-isomer...

Need for substitution at the 1-position....

X = -COOR = Ester X = -CONHR = Amide X = COAr = Ketones

X=COOMe

 Zeolite
 Cis : Trans

 LiY
 45 : 55

 NaY
 39 : 61

 KY
 40 : 60

 RbY
 39 : 61

 CsY
 37 : 63

4'-methoxyacetophenone as sensitizer

BA = 65.70 kcal/mol

B3LYP / 6-31G*

Asymmetric Induction within Zeolites

Chiral Inductor Approach

Asymmetric Induction within Zeolites

Enantioselectivity – Chiral Inductor Approach

Chiral Auxiliary Approach

Asymmetric Induction within Zeolites

Selected Examples

Asymmetric Photoreactions Within Zeolites

Modest to Good Chiral Induction

Factors that Control Asymmetric Induction

Generalization

Chiral Induction Depends on the Alkali Metal Ion

Asymmetric Photoreactions Within Zeolites Modest to Good Chiral Induction Chiral Induction Depends on

> Type of cations in the zeolite

Asymmetric Photoreactions Within Zeolites Modest to Good Chiral Induction

Chiral Induction Depends on

> Type of cations in the zeolite

- Water Content
- > Number of Cations (Si/Al ratio)

Role of Cation-Carbonyl Dipolar Interaction

HF / 3-21G

BA = 104.10 kcal/mol

Role of Cation-\pi Quadrupolar Interaction

Phenyl vs Cyclohexyl

Role of Cation-π **Quadrupolar Interaction**

Asymmetric Photoreactions Within Zeolites

Modest to Good Chiral Induction

Chiral Induction Depends on

- > Type of cations in the zeolite
- > Water Content
- Number of Cations (Si/Al ratio)
- Chiral Perturber
 - Anchoring of chiral perturber Cation-aromatic or cation-carbonyl interactions

Gas Phase Based Computational Studies Could be a Good Starting Point

Gas phase

Inside zeolite

Gas phase

Smaller binding energy compared to gas phase

Trend likely to remain the same

Cation Dependent Diastereomer Switch

Li⁺ (vs) K⁺ – Cation Dependent Diastereomer Switch

HF/ 3–21G

Amide of L-valine methyl ester

BA = 104.10 kcal/mol

BA = 53.33 kcal/mol

Comparison of Norephedrine and Pseudoephedrine Effect of 'N-Methyl' Group

Effect of N-Methyl Substitution on Diastereomer Switch

(N-Me and NH) 1-phenylethyl amide – Conformations

NH-*cis-trans* BA = 91.30 kcal/mol

NH-*trans-trans* BA = 89.79 kcal/mol

N-methyl-*trans-trans* BA = 90.67 kcal/mol

Asymmetric Photoreactions Within Zeolites

Modest to Good Chiral Induction

Chiral Induction Depends on

- Type of cations in the zeolite
- > Water Content
- Number of Cations (Si/Al ratio)
- Chiral Perturber
 - Anchoring of chiral perturber Cation-aromatic or cation-carbonyl interactions
- Cation binding Diastereomer switch
 - Controlling diastereomer switch by N-methylatior

Asymmetric Induction within Zeolites

Diastereoselective photoisomerization from the triplet state

Efforts to sensitize the reaction with fluorenone (E_T = 50.4 kcal/mol) and Acetonaphthone (E_T =59.7 kcal/mol) were unsuccessful.

Diastereoselectivity - Dependence on Reactive State

Relative reactivity of diradicals determines the diastereoselectivity

Cis : trans = 5 : 95

Cis : trans = 45 : 55

Cis : trans = 5 : 95

Asymmetric Photoreactions Within Zeolites

Modest to Good Chiral Induction

Chiral Induction Depends on

- > Type of cations in the zeolite
- Water Content
- Number of Cations (Si/Al ratio)
- Chiral Perturber
 - Anchoring of chiral perturber Cation-π or cation-carbonyl interactions
- Cation binding Diastereomer switch
 - Controlling diastereomer switch by N-methylatior
- > Reactive State (S_1 vs T_1)
- Mechanism of the Reaction

Becker, R. S.; Edwards, L.; Bost, R.; Elam, M.; Griffin, G.; JACS, <u>94</u>, 6584-6591, (1972).

Singlet energy ~ 102 kcal/mole Triplet energy ~ 53 kcal/mole Phosphorescence $(\tau_p) = 8$ msec Medium = 3-Methylpentane glass Temperature = 77K

Efforts to sensitize the reaction with fluorenone $(E_T = 50.4 \text{ kcal/mol})$ and acetonaphthone $(E_T = 59.7 \text{ kcal/mol})$ were unsuccessful.

Emission from *cis*-diphenylcyclopropane derivatives

Emission from *trans*-diphenylcyclopropane derivatives

Time resolved Emission

 $(\tau_p) = 8$ msec JACS, <u>94</u>, 6584-6591, (1972).

Structureless emission ?

Lifetime is too short to be phosphoresence.

Based on triplet sensitization results the emission is at a lower energy to be phosphoresence.

Resembles the emission from benzyl radicals (510 – 700 nm).

Role of Naphthalene in photoisomerization of Diphenylcyclopropane

Conclusions

Influence of the Chiral Period	erturber – Increased Within Zeolite
Stereoselectivity	y Reactive spin state
Photo-isomerization withi	n Zeolites
> Direct excitation	Proceeds possibly via 1,3-zwitterionic intermediates
Triplet sensitiza	tion Proceeds via equilibrated 1,3-diradicals
Photo-isomerization in So	olution
Direct excitation	Adiabatic processes may be involved, especially at 77K
>	Proceeds via non-equilibrated 1,3-diradicals
	Triplet state not involved
Triplet sensitization	Triplet energy of DPCP derivatives above 69 kcal/mol
\triangleright	Proceeds via equilibrated 1,3-diradicals
Role of Naphthyl chromop	phore in Photo-isomerization of diphenylcyclorpropane
Direct excitation	Proceeds possibly via
	1,3—singlet diradical (solution)
	zwitterionic / 1,3-Triplet diradical (Nature of zeolite)

Isotropic media

Diastereomeric products 1:1

Confined space (Role of confinement)

Slight diastereomeric excess

Inside zeolites (Role of cations and confinement)

Cation

Large diastereomeric excess

Conclusions

Influence of the Chiral Perturber – Increased Within Zeolite

Stereoselectivity
 Water content
 Nature of the chiral perturber
 Reactive spin state

Photo-isomerization within Zeolites

Direct excitation
Proceeds possibly via 1,3-zwitterionic intermediates

Triplet sensitization
Proceeds via equilibrated 1,3-diradicals

Photo-isomerization in Solution

Direct excitation
 Adiabatic processes may be involved, especially at 77K
 Proceeds via non-equilibrated 1,3-diradicals
 Triplet sensitization
 Triplet energy of DPCP derivatives above 69 kcal/mol
 Proceeds via equilibrated 1,3-diradicals

Acknowledgement

Prof. V. Ramamurthy

Ramamurthy group members

Prof. Nicholas. J. Turro and Dr. Steffan Jockusch

Prof. John. R. Scheffer and Kenneth. C. W. Chong

Prof. J. Chandrasekhar and Dr. R. B. Sunoj

NSF