

The Nobel Prize in Chemistry 1964 "for her determinations by X-ray techniques of the structures of important biochemical substances"

She belonged to many international peace organizations and, owing to Cold War restrictions, was not permitted to obtain a U.S. visa until 1990.

Photodimerization of trans-Cinnamic acids

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

α -trans-Cinnamic acid Leads to centrosymmetric dimer

 β -trans-Cinnamic acid Leads to mirror symmetric dimer

Packing arrangement of methyl-meta-bromocinnamate.

Note that the two reactive double bonds are not parallel to one another.

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

Crystal Engineering

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

K. Venkatesan, V. Ramamurthy et. al., (1984)

The next decade will surely see more use of crystallographic information in the field of large-amplitude molecular motions in the solid state

J. D. Dunitz, V. Schomaker and K. N. Trueblood (1988)

Difference Fourier maps of (E)-stilbene

Pedal motion of stilbenes

Harada and Ogawa, JACS, 126, 3539 (2004).

Photodimerization of criss-cross alkenes

Time of hv (hrs)	% conv.	β- truxinate	cis	δ- dimer
7	23	20	3	trace
12	35	30	4	1
21	45	38	5	2
32	57	49	6	2

 $d_1 = 3.9 \ A^\circ$ and $d_2 = 4.1 \ A^\circ$

Large motions are tolerated in the crystal

- C=C exists in criss-crossed arrangement.
- Pedal-like conformational change by one of the cinnamic acid molecules is required for β-dimer formation.

Cis-Trans Photoisomerization in Crystals

Photoisomerization of *cis*-8-fluoranthenyl styrene

Large distance between the reactive double bonds 6.77 A° precludes cyclobutane intermediate.

Photoisomerization of cis-8-fluoranthenyl styrene

С

а

Empty channel along c axis

Absence of short contacts near reaction site favors rotation.

C---C > 3.4 A° C---H > 2.8 A° H---H > 2.4 A°

Pre-organization with a guest: Non reactive molecule made to react

In solution isomerization In crystals no reaction

MacGillivray et. al., JACS, 2000, 122, 7817.

Overview of templated dimerization of olefins in solid-state

Thiourea as a possible template (Cambridge Structural Database)

An overview of photochemistry of stilbazoles in thiourea co-crystals

protons in dimer products

Anomalous orientation of 4-cyanostilbazole in thiourea co-crystals

Does Not Dimerize

Does Not Dimerize

Acknowledgements

National Science Foundation

WHERE DISCOVERIES BEGIN

Controlling Products in Photocycloaddition Reactions

Poor alignment Multiple products

Highly aligned Single product de Mayo et al., JCS. Chem. Comm., 1980, 994

Water Soluble Hosts as Confined Media

Supramolecular Containers

Syn head-head

Anti head-tail

 π - π interaction

trans-Cinnamic acids photo inactive in solid state (γ-form)

Ar	Solid state	% of dimer in CB[8]	% of cis isomer
R=4-OCH ₃		72	28
R=3-OCH ₃		72	28
R=3-CH ₃		83	17

trans-Cinnamic acids that yield *anti* H-T dimer upon irradiation in solid state (α -form)

1) Top-¹H NMR of O-methoxy cinnamate in D_2O 2) Bottom- ¹H NMR of encapsulated O-methoxy cinnamate in Pd-Nanocage (0.5 eq.)

 R_1

Syn HH

Syn HT

R₄= R₅= R₅=H	Water	60	40	-
1 2 3	Pd-nanocage	>90	-	-
R₄=Me.	Water	15	-	85
$R_2 = R_3 = H$	Pd-nanocage	>90	-	-

R₂= OMe.	Water		>90	-
$R_1 = R_3 = H$	Pd-nanocage	>90	-	-

R _a =OMe	Water	Not soluble		
$R_1 = R_2 = H$	Pd-nanocage	>90	-	-

Charge repulsion

Syn H-H

Cation- $\boldsymbol{\pi}$ interaction

Anti H-T

Cation- π interaction Minimized ionic repulsion

anti H-T

Guest	Medium	anti H-T	syn H-T	cis
	Water	03	02	95
H-N	CB[8]	90	05	05
+ ^H	Water	02	02	96
	CB[8]	82	00	18

anti H-H

syn H-T

Photochemistry of Stilbazoles

Anti H-T

Medium	<i>anti</i> H-T	<i>syn</i> H-T	cis
dil. HCl	13	16	71
PHBSA	24	14	62
CA[6]SO ₃ H	76	5	19
CA[8]SO ₃ H	86	2	12
CB[8]	90		10

Cation- $\boldsymbol{\pi}$ interaction

Can additional weak interactions (eg. Cl---Cl) alter the olefin pre-orientation?

Counter anion Cl⁻

Head-tail

Head-head

Guest	Medium	Cis+ Cyclized	Head-tail	Head-head
_				
́ [*] -н	CB[8]	02	93	05
	γ-CD	48	27	19
、	<i>C</i> B[8]	12	88	00
°-{-}-	γ-CD	26	74	
	<i>C</i> B[8]	02	92	06
	γ-CD	27	5	68
		00	0.4	49
сі	CB[8]	03	δ4	13
	γ-CD	25	8	67

Acknowledgements

National Science Foundation

in a L