Crystalline State Photochemistry

The Nobel Prize in Chemistry 1964 "for her determinations by X-ray techniques of the structures of important biochemical substances"

Photoreactions in Crystals

"A crystal is a chemical cemetery" Nobel Laureate L. Ruzika (1930s) Esher's drawings

Photodimerization of trans-Cinnamic acids

α -trans-Cinnamic acid Leads to centrosymmetric dimer

 β -trans-Cinnamic acid Leads to mirror symmetric dimer

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

K. Venkatesan, V. Ramamurthy et. al., (1984)

"The next decade will surely see ----- <u>large-</u> <u>amplitude molecular motions in the solid state</u>."

J. D. Dunitz, V. Schomaker and K. N. Trueblood (1988)

Pedal motion of stilbenes

Harada and Ogawa, JACS (2004).

Photodimerization of criss-cross alkenes

Large motions are tolerated in the crystal

 Pedal-like conformational change by one of the cinnamic acid molecules is required for β-dimer formation.

Pre-organization with a guest: Non reactive molecule made to react

MacGillivray et. al., JACS, 2000, 122, 7817.

Overview of templated dimerization of olefins in solid-state

Thiourea as a possible template (Cambridge Structural Database)

An overview of photochemistry of stilbazoles in thiourea co-crystals

protons in dimer products

Anomalous orientation of 4-cyanostilbazole in thiourea co-crystals

Does Not Dimerize

Does Not Dimerize

Cis-Trans Photoisomerization in Crystals

Photoisomerization of *cis*-8-fluoranthenyl styrene

Large distance between the reactive double bonds 6.77 A° precludes cyclobutane intermediate.

Supramolecular Containers

Role of Weak Interactions

Cation - - π

 $\pi - - \pi$

С-Н----

Hydrogen bond

van der Waals

Charge transfer

Asymmetric Photochemistry in Crystals

Adamantyl acetophenone derivatives

P2₁/n centrosymmetric

% ee = 0

Most commonly occurring space groups

230 unique space groups of which only 65 are chiral space groups Chiral space groups (symmetry elements are rotational, translational and combinations of these) achiral space groups (symmetry elements are mirror, glide plane or center of inversion)

Space group	Total no. of crystals	%
P2 ₁ / c	10450	36.0
$P_{\overline{1}}$	3986	13.7
$P2_12_12_1$	3359	11.6
P2 ₁	1957	6.7
C ₂ / c	1930	6.6
P _{bca}	1261	4.3
Pnma	548	1.9
Pna2 ₁	513	1.8
P _{bcn}	341	1.2
P1	305	1.1

Covalent Chiral Auxillary Approach

Chiral space group

Trans CBTrans CBTrans CB% de979092

Conformational isomerism

-OH

%de 1

3

"Crystallization with equal amounts of two independent and mirror image related conformers"

Essential Criteria for Asymmetric Photochemistry in the Crystalline State

Molecules must crystallize in a chiral space group (non-centro symmetric form) Majority of achiral molecules crystallize in a non chiral space group (symmetric packing)

P2₁/n centrosymmetric

 $P2_12_12_1$ non-centrosymmetric

Diastereoselective Photoreactions in the Crystalline State

Generality and limitation of covalent chiral auxiliary strategy

Crystal irradiation of Benzonorbornadiene derivatives

91

Mirror image related conformers

Photochemistry of α -Oxoamides

Medium	1	2	3
Solution (CH_3CN)	19	35	46
Crystal	0	100	0

		Crystal structures	<i>C</i> =Oγ-H ₁	C=O γ-H ₂	%de of β -lactam
a)	$ \xrightarrow{O}_{N \to O} \xrightarrow{O}_{HN \to O} \xrightarrow{O}_{P-R-phenylethylamide} $	A start A	2.814 A ^o	5.077 A ^o	>99(A)
b)	P-S-tyrosine methylesteramide	J. A.	2.562 A°	5.091 A°	>99(B)
c)	$ \xrightarrow{O}_{N \to O} \xrightarrow{N}_{H} \xrightarrow{N}_{H} \xrightarrow{O}_{N \to O} \xrightarrow{N}_{H} \xrightarrow{N} \xrightarrow{N}_{H} \xrightarrow{N}_$	Atrath	2.737 A°	5.214 Aº	>99(B)
d)	p-R-secondarybutylmide	How the	2.781 A ^o	5.052 A°	96(B)
e)	p-S-phenylalanine methyl esteramide	the the the	2.618A°	5.130 A°	82(A)

Diastereoselectivity obtained with various chiral auxiliaries in solid state

-		Crystal structures	<i>С</i> =Оγ-Н ₁	С=О γ-Н ₂	%de of β-lactam
f)	P-R-phenylglycinol	A H	2.776 A ^o	5.025 A ^o	93(B)
g)	\rightarrow N O HN HO D P -1R, 2S-ephedrine	the for	2.804 A ^o	5.030 A ^o	87(B)
h)	P-S-amidomethylphenylpropanol		2.662 A ^o	5.034 A ^o	85(B)
i)	\rightarrow	the state	2.713 Aº	4.850 A ^o	80(A)

β-lactam photoproduct[#]

Photoproducts analyzed on HPLC chiralcel-OD

~ A: First peak on HPLC

Single crystal-to-Single Crystal Phototransformation

Dark single line- Product

Photoproduct as Formed $(P2_1)$

Photoproduct Recrystallized (P21)

$$a = 8.5684 \text{ Å}$$

 $b = 12.8865 \text{\AA}$
 $c = 9.8260 \text{ \AA}$
 $\beta = 107.98^{\circ}$
Cell volume 1031.99(30) \AA^3

A crystal is a chemical cemetery

Reactions in the solid state take place with minimum atomic movements.

The next decade will surely see ----- largeamplitude molecular motions in the solid state

Acknowledgements

National Science Foundation

WHERE DISCOVERIES BEGIN

