

Controlling Photochemical Reactions With Confinement and Weak Intermolecular Forces

Confinement

Weak Forces

Medium Matters U Solution Gas phase (solvent + solute) Rhodopsin ≻ Increasing selectivity How do biological media enforce selectivity?

By providing highly constrained and well defined nano sized reaction cavity.

How can we achieve such a high level of selectivity in photochemical reactions in a laboratory?

- Confinement
- Weak interactions
- Ability to solubilize substrates in water

How can we achieve such a high level of selectivity in photochemical reactions in a laboratory?

Are there any other media with some of the features of biological media?

Bioinspired Green Supramelecular (Nang) Photochemistry

- Objective: To carry out product selective photoreactions in water (or in solid state)
- Problem: Organic compounds generally are either poorly soluble or insoluble in water
 - (Most organic compounds are liquid)
- Solution: Use water soluble hosts to solubilize organic molecules
 - (Use solid hosts to trap liquid molecules)
 - Use confining hosts to achieve product selectivity

Common Containers

Supramolecular Containers

SDS / CTAC

NaCh / NaDCh

Dendrimers

→ hydrophobic functionality) → hydrophilic functionality

Water soluble polymer

Calixarenes

Cyclodextrins

Cucurbiturils

Pd nano cage

Octa acid

Zeolites

Crystals

Supramolecular Containers: General Features

Relevant Weak Interactions in Supramolecular Chemistry

Examples of weak intermolecular interactions (typical energies vary from <1 kcal mol⁻¹ to ~10 kcal mol⁻¹)

Octaacid as a Container

C. L. D. Gibb, and B. C. Gibb, J. Am. Chem. Soc., 2004, 126, 11408.

0 OF 0

ЮH

но~оно~о

Complexation Modes

What type of and how many molecules may fit within a OA container?

Encapsulation of aromatics within octa acid

Probing the Micro-polarity of OA Capsule

All above probes torm 2:1 nost-guest complexes.

Dynamics of supramolecular assemblies

Dynamics of supramolecular assemblies

NOSEY

Dynamics of guest molecules within OA: NOESY studies

Slithering Motion of a Guest Within a Capsular Assembly

Manipulating photophysics and photochemistry through confinement

Photochemistry and Photophysics of Anthracene

OA-anthracene complex

Photophysics of OA-Anthracene Complex

---- Anthracene in octa acid

Sandwich pair emission- slow addition of host to the guest in borate buffer

Sandwich excimer – τ 210 – 225 ns

Isotropic solution

OA complex

Product too large to fit in

Oxidation of olefins by singlet oxygen: Ene reaction

Academic Press, New York, 1979.

C. S. Foote, Pure Appl. Chem., 27, 635 (1971)
Characterization of Olefin-OA Complex by ¹H NMR

NOE interactions between the host and the guest

1-Methylcyclohexene anchored through methyl group within OA

Singlet oxygen generation for oxidation of encapsulated olefins

Selective oxidation of 1-methyl cycloalkenes-OA complex

The primary radical pair prefers to rotate than decarbonylate

	Relative produc	ct distril	distribution (%)	
Medium	RAA1+RAA2	AA	<i>p</i> -RP	
Hexane		>99		
Octa acid	10	34	56	

 $X = CH_2CH_3$ $X = (CH_2)_2CH_3$ $X = (CH_2)_3CH_3$ $X = (CH_2)_4CH_3$

Controlling free space through an alkyl tail

Conformational Control and Rotational Restriction

Í

$X = (CH_2)_4 CH_3$
$X = (CH_2)_5 CH_3$
$X = (CH_2)_6 CH_3$

 $\mathsf{X} = (\mathsf{CH}_2)_3\mathsf{CH}_3 \qquad \mathsf{X} = (\mathsf{CH}_2)_7\mathsf{CH}_3$

-C ₃ H ₇	35	4	50	11
-C ₈ H ₁₇	-	-	10	90

Role of Free Space Conformational Control and Rotational Restriction

Amplified Chiral Induction in a Supramoecular Assembly

Importance of phenyl group and methyl substitution

21%

92%

56%

Room Temperature Phosphorescence

Diffusion controlled self-quenching and oxygen-quenching in solution

Prevention of self quenching with the help of containers

	$\tau^{o}_{T}(\mu s)^{a}$	ΟΑ		
Guests		H:G ^c	$ au_{\mathrm{T}}(\mu s)^{\mathrm{b}}$	k_{q,O_2} (M ⁻¹ s ⁻¹)
Fenchthione	154	2:2	187	(1.6±0.4)×10 ⁶
Camphorthione	46.3	2:2	65	(2.4±0.1)×10 ⁷
Adamantanethione	43.3	2:2	17.2	(2.8±0.1)×10 ⁷

a: exptraolated to infinite dilution in perflurodimethylcyclohexane b: at 10^{-5} M of thione and 10^{-5} M of OA

Role of Weak Interactions

Cation-- π

 $\pi - - \pi$

1000

Fluorescence enhanced and lifetime lengthened within the OA capsule

C-H--- π Interaction Controls the Rotation

$H_{3}C$ $\downarrow hv$ $S_{1} \text{ or } T_{1}$ $\downarrow H_{3}C$ CH_{3}	Solution CDCl ₃ / Hexane	Octa acid	
Chemical shift δ of CH_3	2.35 ppm	- 2.3 ppm	
Pseudo-photostationary state -Singlet (Cis:Trans)	76:18	20:80	
Photostationary state - Fluorenone Triplet (Cis:Trans)	80:20	0:100	
Lifetime (ns)	<0.7	1.74	

Possible Selective Rotation of the Phenyl group

$H_{3}C$ hv $S_{1} \text{ or } T_{1}$ $H_{3}C$	Solution CDCl ₃ / Hexane	Octa acid	
Chemical shift δ of CH_3	2.35 ppm	- 2.1 ppm	
Pseudo-photostationary state -Singlet (Cis:Trans)	85:15	85:15	
Photostationary state – Triplet (Cis:Trans)	82:18	86:14	
Lifetime (ns)	<0.7	0.94	

GFP, Roger Tsien

- Depending on the guest, the OA forms 1:1, 2:1 or 2:2 complexes.
- Weak interactions and confinement could be used to control ground state and excited state properties of molecules.
- In host-guest complexes, guest and host molecules are not stationary. They undergo several different types of motions.
- Communication between molecules across molecular walls is possible.

Container Chemistry at Backyard

Sireesha

Arun

Arun

Anand

National Science Foundation

WHERE DISCOVERIES BEGIN

G. H. Hardy 1877-1947

S. Ramanujan 1887-1920

Disclaimer

Invisible Value of Basic Science

No discovery of mine is likely to make-the least difference to the amenity of the world. I have helped to train other mathematicians of the same kind----their work has been as useless as my own.----Anyhow I have added something to knowledge and helped others to add more---these have a value----.

A Mathematician's Apology, 1940

Are there any other media with some of the features of biological media?

Container Chemistry
Controlling Chemistry With Confinement

Medium (host): Octa Acid

Complexation

Dynamics

Excited state chemistry

Communication

Supramolecular Host-Guest Complexes

Role of Free Space: Product Must Fit the Reaction Cavity

Prof. Turro

Prof. Ottaviani

Dr. Jockusch

Prof. Gibbs

Exploiting C-H --- π Interaction

