Supramolecular Photochemistry Introduction and Photophysics

Reference books

MODERN MOLECULAR PHOTOCHEMISTRY OF ORGANIC MOLECULES

Nicholas J. Turro V. Ramamurthy J.C. Scaiano

2010 Chapter 13 PHOTOCHEMISTRY ORGANIZED CONSTRAINED MEDIA

V. Ramamurthy

1991

Supramolecular Photochemistry

Controlling Photochemical Processes

WILEY

2011

How do biological media enforce selectivity?

Highly selective geometric isomerization occurs within a protein medium

Bacteriorhodopsin

Photoactive yellow protein

Green fluorescent protein

How do a biological media enforce selectivity?

- * by restricting the rotational and translational motions
- * by pre-organizing the reactants
- * by controlling the extent and the location of free space within a reaction cavity

The beginnings of supramolecular organic chemistry: Cram, Lehn, Pedersen

The Nobel Prize in Chemistry 1987

"for their development and use of molecules with structure-specific interactions of high selectivity"

Donald .

Donald J. Cram	Jean-Marie Lehn
I/3 of the prize	⁽¹⁾ 1/3 of the prize
USA	France
University of California Los Angeles, CA, USA	Université Louis Pasteur Strasbourg, France; Collège de France Paris, France
b. 1919 d. 2001	b. 1939

Charles J. Pedersen O 1/3 of the prize USA Du Pont Wilmington, DE, USA b. 1904

(in Fusan, Korea) d. 1989

SCN

Crown ether complex according to Pedersen cryptand complex = cryptate according to Lehn host-guest complex according to Cram

Supramolecular Photochemistry

R. Breslow

J. M. Lehn

N. J. Turro

Supramolecular Hosts

Cyclodextrins

Cucurbiturils

Octa acid(OA)

Calixarenes

Micelles

Crystals

Dendrimers

Zeolites

The guest@host paradigm

We'll be using this paradigm to discuss supramolecular systems

Cartoons of micelle structure

Gouy-Chapman Layer (up to several hundred A)

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Why do micelles form at all?

Cartoon of the hydrophobic effect: (1) water is more ordered about the surfactant monomer (left) than ordinary water causing an relative increase in water organization and a decrease;

(2) Water is less ordered about the hydrophobic skin of the micelle causing a relative increase in entropy.

Surfactants gather at interfaces: the air/ water interface and the water/solid interface

Structures formed from surfactants in aqueous solution

The critical micelle concentration phenomenon: Sudden break in properties near a certain concentration of surfactant

Concentration / mmol·kg⁻¹

Dendrimers: covalent micelles

A dendrimer: a hyperbranched polymer

Generation increasing →

Generations of dendrimers

		JAK K		
generation	surface groups	diameter (Å)	separation of the surface groups (Å)	surface groups
0.5	6	27.9	12.4	8
1.5	12	36.2	12.8	16
25	24	48.3	12.7	32
3.5	48	66.1	12.6	64
4.5	96	87.9	11.5	128
5.5	192	103.9	10.3	256
6.5	384	126.8	9.8	512
7.5	768	147.3	7.7	1024

Water soluble organic hosts: Cyclodextrins

~9 Å*

Water soluble organic hosts: Cucurbiturils

> Easily prepared by the condensation of glycoluril in acidic medium.

Hexamer [CB6] known since early 1900's, first characterized in 1981.

> Kim and coworkers pioneered the synthesis and isolation of the higher CBs [n = 7, 8, 10] in 2000.

Water soluble inorganic host: Fujita's Pd host

Porous Solids: Zeolites

Zeolites: Sythetic

More than 65% of the earth's crust consists of 3D crystalline polyaluminosilicates (3D-CPAS): feldspar, zeolite, and ultramarine. Zeolite is a class of 3D-CPAS having nanochannels and nanocavities.

The crystal as a supramolecular entity

24

Common Containers

Role of Weak Interactions

Cation $--\pi$

 $\pi - - \pi$

С-Н---л

Hydrogen bond

van der Waals

Charge transfer

Supramolecular Photophysics

- Manipulating photophysics of organic molecules through weak interactions and confinement
- Use of organic photophysics in understanding supramolecular structures
- Supramolecular organic photohysics: Sensors, molecular motors, etc.

Fluorescence:

- High radiative rate constant, 10⁻¹⁰ to 10⁻⁸ s⁻¹
- \cdot Precursor state (S₁) has a short lifetime
- · Not susceptible to quenching

Phosphorescence:

- Low radiative rate constant, 10⁻⁶ to 10 s⁻¹
- Precursor state (T_1) has long lifetime
- Very much susceptible to quenching
- \cdot Emission quantum yield depends on S₁ to T₁ crossing

The heavy atom effect on spin transitions

The "heavy atom" effect is an "atomic number" effect that is related to the coupling of the electron spin and electron orbit motions (spin-orbit coupling, SOC).

Most commonly, the HAE refers to the rate enhancement of a spin forbidden photophysical radiative or radiationless transition that is due to the presence of an atom of high atomic number, Z.

The heavy atom may be either internal to a molecule (molecular) or external (supramolecular).

Strategy to record phosphorescence at room temperature through supramolecular approach

Stage 1

k_{ST}

Heavy atom effect mainly on k_{ST} so that $k_{ST} > k_1$

Make more triplets through the heavy atom effect

Stage 2

Make triplets emit faster in competition with quenching processes

Cyclodextrins as hosts

Phenanthrene@Cyclodextrin: effect of CH₂Br₂ as co-guest

Induced Intersystem Crossing Depends on the SOC: Cations as the heavy atom pertuber

Atom	Ionic Radius of the Cation (Å)	Spin-Orbit Coupling ζ cm ⁻¹	
Li	0.86 (+)	0.23	
Na	1.12	11.5	
K	1.44	38	
Rb	1.58	160	
Cs	1.84	370	
ΤΙ	1.40	3410	
Pb	1.33 (2+)	5089	

Crown ethers, micelles and zeolites contain cations

Copyright 1999 John Wiley and Sons, Inc. All rights reserved

External heavy atom effect: Crown ether approach

Table II. Estimates^{*a,b*} of Rate Constants for Excited-State Processes of 1,5-Naphtho-22-crown-6 (1) in Alcohol Glass^{*c*} at 77 K with Alkali Metal Chloride Salts Added in 5:1 Molar Excess (Crown at $1.00 \times 10^{-4} F$)

Salt added	$10^{-6}k_{\rm f}$	$10^{-6}k_{\rm nr}$	$10^2 k_p^d$	k_{dt}^{d}
None	3.1	25	8.7	0.37
NaCl	2.6	32	6.7	0.41
KCl	2.3	35	5.8	0.39
RbCl	1 e	52	12.	0.50
CsCl	1 e	670	81.	1.57

^{*a*} All rate constants in s⁻¹. ^{*b*} $k_f = \phi_f \tau_f^{-1}$; $k_{nf} = (1 - \phi_f) \tau_f^{-1}$; $k_p = \phi_p (1 - \phi_f)^{-1} \tau_p^{-1}$; $k_{dt} = \tau_p^{-1} - k_p$. ^{*c*} See note 4. ^{*d*} With $\phi_f + \phi_{isc} = 1.0$ assumed. ^{*e*} Estimated from 77 K UV absorption spectra.

Micelles as hosts

Naphthalene@SDS micelle: effect of heavy atom counterions

Heavy atom produces more triplets and the triplets produced phosphoresce at a faster rate

Emission Spectra of Naphthalene Included in MY Zeolites

Room temperature phosphorescence

Phosphorescence from Diphenyl Polyenes

Diffusion controlled self-quenching and oxygen-quenching in solution

Prevention of self quenching and oxygen quenching with the help of containers

Room temperature phosphorescence from thioketones in solution

Me, Me

Camphorthione

Fenchthione

Adamantanethione

- No phosphorescence in spite of good binding within CB[7] (K= 4.85X 10⁴ M⁻¹)
- Exposure of C=S to water leads to this anomaly

(Py)₂@Cyclodextrin: Enhanced excimer formation due to preorganization of two pyrenes in a cyclodextrin cavity

Zeolites as hosts

Anthracene@NaX: Cation controlled aggregation

Photophysics of OA-Anthracene Complex

---- Anthracene in water

---- Anthracene in octa acid

Sandwich pair emissionslow addition of host to the guest in borate buffer

Fluorescence Response to Solvent Polarities

Pyrene as a polarity probe

JUALL

Octa acid's interior micropolarity probed ,CHO H₃ H₃CO

All above probes form 2:1 host-guest complexes.

Interior of octa acid is benzene-like

'Dry' and 'Non-polar'

Hydrogen

Oxygen