Photochemistry in a Capsule

Controlling Photochemical Reactions With Confinement and Weak Intermolecular Forces

Medium Matters (UI) Solution Gas phase (solvent + solute) Rhodopsin ≻ Increasing selectivity How do biological media enforce selectivity?

By providing highly constrained and well defined nano sized reaction cavity.

How can we achieve such a high level of selectivity in photochemical reactions in a laboratory?

Container Chemistry

- Objective: To carry out product <u>selective</u> photoreactions in water (or in solid state)
- Problem: Organic compounds generally are either poorly soluble or insoluble in water

(Most organic compounds are liquid)

Solution: Use water soluble hosts to solubilize organic molecules

(Use solid hosts to trap liquid molecules)

Use confining hosts to achieve selectivity

Supramolecular Containers

NaCh / NaDCh

Dendrimers

 \checkmark hydrophobic functionality \bigcirc \Rightarrow hydrophilic functionality

Water soluble polymer

Calixarenes

Cyclodextrins

Cucurbiturils

Pd nano cage

Octa acid

Zeolites

Crystals

C. L. D. Gibb, and B. C. Gibb, J. Am. Chem. Soc., 2004, 126, 11408.

What type of and how many molecules may fit within a OA container?

Encapsulation of aromatics within octa acid

Probing the Micro-polarity of OA Capsule

All above probes form 2:1 host-guest complexes.

Probing the Micro-polarity of OA Capsule

Manipulating photophysics and photochemistry through confinement

Photochemistry within a water-soluble organic capsule, V. Ramamurthy, *Acc. Chem. Res.*, 48, 2904, **2015**.

Communication between confined and free molecules How good is the wall of a carcerand at protecting a guest?

Supramolecular Photochemistry in Solution and on Surfaces: Encapsulation and Dynamics of Guest Molecules, and Communication Between Encapsulated and Free Molecules V. Ramamurthy, S. Jockusch and M. Porel, Langmuir, **2015**, *31*, 5554-5570 (Feature review article)

Spin transfer between confined and free molecules

Probing the spin-spin interaction between caged and free nitroxides

Spin transfer

Nuclear spin labeling

¹⁴N (I=1) ¹⁵N (I=1/2)

Probing the location of nitroxides by EPR

EPR spectrum of mixture of BP-15NO and 14NO in OA

integrated EPR spectra

No spin-spin interactions between internal and external guests

integrated EPR spectra

Probing the spin-spin interaction between caged and free nitroxides

Spin polarization transfer through a molecular wall

Interaction of spin polarized ketone triplets with nitroxide

Acetonitrile solution

Spin polarization of TX-¹⁵NO@OA

Spin polarization transfer from TX-¹⁵NO to ¹⁴NO

Turning spin polarization transfer off by trapping of external guest with CB[8]

Turning spin polarization transfer off by trapping external guest with CB[8]

No spin polarization transfer from TX-¹⁵NO to $^{14}NO^{\ominus}$

Spin communication between the triplet state of the confined guest and nitroxide

Spin polarization transfer monitored by time-resolved EPR

time (µs)

Energy transfer between confined and free molecules

Donors

clΘ

4,4' -Dimethyl stilbene

Coumarin 153 (C 153)

Coumarin 480 (C 480)

Coumarin 1 (C 1)

Azulene

Guiazulene

Acceptors

N-Methyl pyridinium Iodide Methyl viologen dichloride TiO₂

ZrO₂

AuNP

Fluorescence (S₁) quenching: Possibility of electron transfer

Laser Flash Photolysis of St@OA/MV²⁺ $$t@OA:MV^{2+} = 1:2$$$ $\lambda_{ex} = 308 \ nm $$$

Back electron transfer increases with charge attraction

Fluorescence titration of C153@OA₂ with MV^{2+}

Time resolved:

Transient absorption of C153@OA₂ with MV²⁺ Time Constant for Electron Transfer

 λ_{ex} = 390 nm pulse width= 150 fs

C. Burda and C. H. Chuang

Fluorescence (S₂) quenching: Possibility of electron transfer

Time Constant for Electron Transfer between $Azulene_2^* OA_2$ and MV^{2+}

Electron transfer rates from encapsulated guests to methylviologen

Azulene

Guiazulene

Solution	MV ^{+.} (625 nm)	Time constant (τ, ps)
(C153@OA ₂) + MV ²⁺	Rise Decay	20 ± 0.8 724 ± 38
(C480@OA ₂) + MV ²⁺	Rise Decay	1.2 ± 0.1 575 ± 17
(C1@OA ₂) + MV ²⁺	Rise Decay	2.3 ± 0.3 1003 ± 60
(Azulene@OA ₂) + MV ²⁺	Rise Decay	3.9 ± 0.2 55.7 ± 1.6
(Guiazulene@OA ₂) + MV ²⁺	Rise Decay	3.6 ± 0.3 36.9 ± 1.1

Where is the donor when et occurs?

Solvation Dynamics C153 in solution and within OA_2

In Solution

Within OA

Molecular vs Supramolecular Electron Transfer

Supramolecular-Surface Photochemistry

Electron transfer to TiO_2 surface

Azulene

Guiazulene

Octa acid capsule adsorbs onto TiO₂ surface

ZrO₂

Electron transfer from coumarin153@OA₂ to TiO_2

Electron transfer from $azulene_2@OA_2$ and $guiazulene@OA_2$ to TiO_2

(Top) TEM photographs of (i) OA∩AuNP (8.4±1.6 nm); (ii) bare AuNP (see text for definition) and (bottom) Absorption spectra of (i) OA \cap AuNP (a) immediately after preparation (b) after distillation of H₂O and redispersing the precipitate in H₂O; Note the two spectra overlap; (ii) bare AuNP (a) immediately after preparation (b) after distillation of H₂O and redispersing the precipitate in H₂O.

Thermal isomerization of 4-propylazobenzene OA_2 at room temperature

a) Inside OA capsule

b) Inside OA capsule on metastable AuNP

c) Inside OA capsule on citrate capped AuNP

Electron transfer induced *cis* to *trans* isomerization of azobenzene@OA₂ on gold surface

Electron transfer induced cis to trans isomerization of azobenzene@OA₂ on gold surface

Incarceration does not stop communication

Energy transfer between confined and free molecules

Singlet Energy Donor

Triplet Energy Donor

Singlet Energy Acceptor

Triplet Energy Acceptor

Singlet-Singlet Energy Transfer in Solution

Singlet-Singlet Energy Transfer

System	τ^A_{rise}	τ_{D}^{0}	R ₀	R _{DA}
C480@OA ₂ +R6G	1.5 ps	4900 ps	48.8 Å	13±1 Å
C153@OA ₂ +R6G	1.0 ps	7400 ps	55.7 Å	13±1 Å
C1@OA ₂ +R6G	3.5 ps	4300 ps	42.5 Å	13±1 Å

Exfoliated Saponite Clay Surface

0.2 ns / dv

Electron Transfer-Control Expts

Energy Transfer and Subsequent Electron Transfer

Energy Transfer and Subsequent Electron Transfer on the Clay Surface

summary

- Depending on the guest, the OA forms 1:1, 2:1 or 2:2 complexes.
- In host-guest complexes, guest and host molecules are not stationary. They undergo several different types of motions.
- Weak interactions and confinement could be used to control ground state and excited state properties of molecules.
- Communication between molecules across molecular wall is possible.

Photochemistry within a water-soluble organic capsule, V. Ramamurthy, *Acc. Chem. Res.*, *48*, 2904, **2015**.

Supramolecular Photochemistry in Solution and on Surfaces: Encapsulation and Dynamics of Guest Molecules, and Communication Between Encapsulated and Free Molecules V. Ramamurthy, S. Jockusch and M. Porel, *Langmuir*, **2015**, *31*, 5554-5570 (Feature review article)

Supramolecular photochemistry: From molecular crystals to water-soluble capsules V. Ramamurthy and S. Gupta, *Chem. Soc. Rev.*, **2015**, *44*, 119 -135

Supramolecular Photochemistry Concepts Highlighted with Select Examples V. Ramamurthy and B. Mondal *J. Photochem. Photobiol. C: Photochem. Rev.*, **2015**, *23*, 68-102

Supramolecular Photochemistry as a Synthetic Tool, V. Ramamurthy and J. Sivaguru, *Chem. Rev.*, **2016**, 116, 9914-9993 (Special issue on Photochemistry in Organic Synthesis)

University of Miami-Capsule Crew

