Supramolecular Photochemistry

Objective: To conduct product selective photoreactions in water or in solid state

To alter the photophysical properties of molecules

- Problem: Organic compounds generally are either poorly soluble or insoluble in water and not all molecules are crystalline.
- Solution: Use water soluble hosts to solubilize organic molecules Use confining hosts to achieve product selectivity Use weak interactions to manipulate molecules

Supramolecular Containers

Role of Weak Interactions

Cation - - π

 $\pi - - \pi$

C-H---π

Hydrogen bond

van der Waals

Charge transfer

Supramolecular Containers

Reaction cavity

The Grow and the Pitcher

Controlling the free space

Heavy Cations Enhance S_1 to T_1 Crossing

Induced Intersystem Crossing Depends on the SOC of the Alkali Ion

Atom	Ionic Radius of the Cation (Å)	Spin-Orbit Coupling ζ cm ⁻¹	
Li	0.86 (+)	0.23	
Na	1.12	11.5	
K	1.44	38	
Rb	1.58	160	
Cs	1.84	370	
ΤΙ	1.40	3410	
Pb	1.33 (2+)	5089	

Emission Spectra of Naphthalene Included in MY Zeolites

Phosphorescence from Diphenyl Polyenes

Supramolecular Containers

Reaction cavity

Controlling the free space

- $\mathsf{X}=\mathsf{CH}_2\mathsf{CH}_3$
- $X = (CH_2)_2 CH_3$
- $\mathsf{X}=(\mathsf{CH}_2)_3\mathsf{CH}_3$
- $X = (CH_2)_4 CH_3$

- $X = CH_3 \qquad \qquad X = (CH_2)_4 CH_3$
- $X = CH_2CH_3 \qquad X = (CH_2)_5CH_3$
- $\mathsf{X} = (\mathsf{CH}_2)_2 \mathsf{CH}_3 \qquad \mathsf{X} = (\mathsf{CH}_2)_6 \mathsf{CH}_3$
- $X = (CH_2)_3CH_3 \qquad X = (CH_2)_7CH_3$

C. L. D. Gibb, and B. C. Gibb, J. Am. Chem. Soc., 2004, 126, 11408-11409.

The primary radical pair prefers to rotate than decarbonylate

o-RP

p-RP

Relative product distribution				
Medium	RAA1+RAA2	AA	<i>p</i> -RP	
Hexane		>99		
Octa acid	10	34	56	

Role of Free Space: Product Must Fit the Reaction Cavity

Photochemistry and Photophysics of Anthracene

OA-anthracene complex

Photophysics of OA-anthracene complex

600

---- Anthracene in water

---- Anthracene in octa acid

Sandwich pair emission- slow addition of host to the guest in borate buffer

Sandwich excimer – τ 210 – 225 ns

Isotropic solution

OA complex

Product too large to fit in

Conformational Control and Rotational Restriction

Role of Free Space Conformational Control and Rotational Restriction

Amplified Chiral Induction in a Supramoecular Assembly

Importance of phenyl group and methyl substitution

21%

92%

56%

Conformational Control and Rotational Restriction

Asymmetric Photoreactions Within Zeolites

85 % de (NaY)

,0,____, N H

45 % de (NaY)

Importance of Cation-Chiral Auxiliary Binding: Phenyl vs Cyclohexyl

Gaussian 98 HF/ 3-21G *

B.E (Na⁺ complex) = -96.89 kcal/mol

B.E (Na⁺ complex) = -75.49 kcal/mol

Pre-organization Through Weak Interactions

Overview of templated dimerization of olefins in solid-state

Thiourea as a possible template (Cambridge Structural Database)

Photodimerization of 4,4'-bispyridyl ethylene and 4-stilbazole templated by thiourea

Thiourea templated photodimerization of stilbazoles – A general trend

An overview of photochemistry of stilbazoles in thiourea co-crystals

protons in dimer products

Anomalous orientation of 4-cyanostilbazole in thiourea co-crystals

Dynamic Capsule

The opening-closing time may vary with the guest.

Controlling Reactions with Supramolecular Containers

Reaction cavity

Thanks for financial support

National Science Foundation

WHERE DISCOVERIES BEGIN

U.S. Department of Energy

Science for America's Future