Supramolecular Photochemistry

Controlling photocycloadditions through pre-organization and templatation

Concept

Examples

In the absence of control photoaddition leads to multiple products

- Multiple products with different stereo and regiochemistry possible (assuming no electronic or steric preference).
- Pre-organization is essential to achieve selectivity. The cost for selectivity should be pre-paid, *i.e.*, system should be entropically prepared.

Supramolecular Containers as Reaction Vessels

Cyclodextrins

Cucurbiturils

Pd Nano Cage

Calixarenes

SDS / CTAC

Dendrimers NaCh / NaDCh

3

Water soluble polymer

Role of Weak Interactions

 $\pi - - \pi$

Hydrogen bond

Z

Y_0...п

Charge transfer

4

Weak interactions often utilized in templation

Examples of weak intermolecular bonds (typical energies vary from <1 kcal mol⁻¹ to ~ 10 kcal mol⁻¹

Photochemistry in Solid State

Photoreactions in Crystals

(Stobbe, Ber., 1922, 55, 2225; de Jong, Ber., 1922, 55, 463)

L. Ruzika

"A crystal is a chemical cemetery" Nobel Laureate L. Ruzika (1930s)

Photodimerization of *trans*-Cinnamic acids

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

G. M. J. Schmidt

Templation through Cl---Cl interaction: Crystal engineering

Templation through Cl---Cl interaction

Templation through ionic interaction

Templation through ionic interaction

16

18

Stilbazoles not oriented suitably for photodimerization

Thiourea as a Template: Importance of hydrogen bonding

Stilbazole not oriented suitably for photodimerization

Stilbazole

Stilbazole + HCl

Photochemistry in Water

Interface helps to orient molecules

systems in water.

Solution, crystals

Templation in water with the help of a micelle

P. de Mayo

Templation in water with the help of an organized assembly

Templation in water with the help of an organized assembly

31

A comparison of cavity dimensions of cyclodextrins and cucurbit[n]urils

		Cavity Diameter Å	Type of CD	
	α -D-glucopyranoside unit	4.7–5.3	a-CD	
		6.0–6.5	β-CD	
		7.5–8.3	γ-CD	
Cycloc				

	CB[5]	CB[6]	CB[7]	CB[8]
portal diameter (Å)	2.4	3.9	5.4	6.9
cavity diameter (Å)	4.4	5.8	7.3	8.8
cavity volume (Å3)	82	164	279	479
outer diameter (Å)	13.1	14.4	16.0	17.5
height (Å)	9.1	9.1	9.1	9.1

Glycouril unit

Templation with the help of an organic host: Cyclodextrins

Oligosaccharides consisting of 6 or more a-1,4-linked D-glucose units

Volume (Å³): 176 (α), 346 (β), 510 (γ)

Dia at the larger end (Å): 8.8 (α), 10.8 (β), 12.0 (γ)

Templation with cucurbiturils

Anti head-tail

Photodimerization of trans-Cinnamic acids

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

trans-Cinnamic acids that are photo inactive in solid state (y-form)

trans-Cinnamic acids that yield anti H-T dimer upon irradiation in solid state (α -form)

Top-¹H NMR of O-methoxy cinnamate in D₂O
Bottom- ¹H NMR of encapsulated O-methoxy cinnamate in Pd-Nanocage (0.5 eq.)

Photochemistry of Coumarins

syn-HH 2

anti-HH 3

Channels as reaction vessels in the solid state

48

Back to photochemistry of coumarins

Selective photodimerization of coumarin

anti-HH product fits well in host

syn-HH does not fit in channel.