Photochemistry in Confined Spaces

Medium is the Message

Medium Matters (UI) Solution Gas phase (solvent + solute) Rhodopsin ≻ Increasing selectivity How do biological media enforce selectivity?

By providing highly constrained and well defined nano sized reaction cavity.

How can we achieve such a high level of selectivity in photochemical reactions in a laboratory?

Container Chemistry

- Objective: To carry out product <u>selective</u> photoreactions in water (or in solid state)
- Problem: Organic compounds generally are either poorly soluble or insoluble in water

(Most organic compounds are liquid)

Solution: Use water soluble hosts to solubilize organic molecules

(Use solid hosts to trap liquid molecules)

Use confining hosts to achieve selectivity

Supramolecular Containers

NaCh / NaDCh

Dendrimers

 \checkmark hydrophobic functionality \bigcirc \Rightarrow hydrophilic functionality

Water soluble polymer

Calixarenes

Cyclodextrins

Cucurbiturils

Pd nano cage

Octa acid

Zeolites

Crystals

The Medium is the Message

Understanding Media: The extensions of man Marshall McLuhan, 1962.

The Medium is the Message

Understanding Media: The extensions of man Marshall McLuhan, 1962.

SDS / CTAC

Crystals

Cyclodextrins

Zeolites

Octa acid

In the absence of control photoaddition leads to multiple products

- Multiple products with different stereo and regiochemistry possible (assuming no electronic or steric preference).
- Pre-organization is essential to achieve selectivity. The cost for selectivity should be pre-paid, *i.e.*, system should be entropically prepared.

Photoreactions in Crystals

L. Ruzika

"A crystal is a chemical cemetery" Nobel Laureate L. Ruzika (1930s)

Photodimerization of trans-Cinnamic acids

Topochemical principle: Reactions in the solid state take place with minimum atomic movements.

G. M. J. Schmidt et al. 'Solid State Photochemitsry, A Collection of Papers', Verlag Chemie, 1976.

Pre-organization with a guest: Non reactive molecule made to react

MacGillivray et. al., JACS, 2000, 122, 7817.

Single Template Does Not Work for Several Olefins

Reactive Olefins

Templates

Thiourea as a Template: Importance of hydrogen bonding

CSD entry: AMILIR

CSD entry: AMILOX

An overview of photochemistry of stilbazoles in thiourea co-crystals

Stilbazole not oriented suitably for photodimerization

Stilbazole + HCl

A comparison of cavity dimensions of cyclodextrins and cucurbit[n]urils

Type of CD C	avity Diam	eter Å			
a-CD	4.7–5.3	_	α-D-glu	copyranoside	e unit
β-CD	6.0–6.5	_			
γ-CD	7.5–8.3				
	CB[5]	CB[6]	CB[7]	CB[8]	
portal diameter (Å)	2.4	3.9	5.4	6.9	
cavity diameter (Å)	4.4	5.8	7.3	8.8	
cavity volume (Å3)	82	164	279	479	
outer diameter (Å)	13.1	14.4	16.0	17.5	
height (Å)	9.1	9.1	9.1	9.1	

Cyclodextrins

Glycouril unit

Templation with cucurbiturils

Syn head-head

trans-Cinnamic acids that are photo inactive in solid state (y-form)

Ar	Solid state	% of dimer in CB[8]	% of cis isomer
R=4-OCH ₃		72	28
R=3-OCH ₃		72	28
R=3-CH ₃		83	17

trans-Cinnamic acids that yield anti H-T dimer upon irradiation in solid state (α -form)

Ar	Solid state % of anti H-T dimer	% of Syn H-H dimer in CB[8]	% of cis isomer
R=H	100	54	46
R=4-OH	100	38	62
$R=4-NH_3^+$	100	88	12

Interior dia ~ 30 Å Hydrophobic interior Water soluble

1) Top-¹H NMR of O-methoxy cinnamate in D_2O 2) Bottom- ¹H NMR of encapsulated O-methoxy cinnamate in Pd-Nanocage (0.5 eq.)

C. L. D. Gibb, and B. C. Gibb, J. Am. Chem. Soc., 2004, 126, 11408.

What type of and how many molecules may fit within a OA container?

Encapsulation of aromatics within octa acid

Manipulating photophysics and photochemistry through confinement

Photochemistry within a water-soluble organic capsule, V. Ramamurthy, *Acc. Chem. Res.*, 48, 2904, **2015**.

Room Temperature Phosphorescence

Diffusion controlled self-quenching and oxygen-quenching in solution

Prevention of self quenching with the help of containers

	$\tau^{o}_{T}(\mu s)^{a}$	ΟΑ		
Guests		H:G ^c	$ au_{\mathrm{T}}(\mu s)^{\mathrm{b}}$	k_{q,O_2} (M ⁻¹ s ⁻¹)
Fenchthione	154	2:2	187	(1.6±0.4)×10 ⁶
Camphorthione	46.3	2:2	65	(2.4±0.1)×10 ⁷
Adamantanethione	43.3	2:2	17.2	(2.8±0.1)×10 ⁷

a: exptraolated to infinite dilution in perflurodimethylcyclohexane b: at 10^{-5} M of thione and 10^{-5} M of OA

Asymmetric Photoreactions Within Chirally Modified Zeolites

Stilbene derivatives form 1:2 complex with OA Host

¹H NMR titration and integration suggest dimethyl stilbene forms a 1:2 complex with the host

Fluorescence enhanced and lifetime lengthened within OA capsule

C-H--- π Interaction Controls the Isomerization within OA

$H_{3}C$ $\downarrow hv$ $S_{1} \text{ or } T_{1}$		
H ₃ C CH ₃	Solution CDCl ₃ / Hexane	Octa acid
Chemical shift δ of CH_3	2.35 ppm	- 2.3 ppm
Pseudo-photostationary state -Singlet (Cis:Trans)	76:18	20:80
Photostationary state - Fluorenone Triplet (Cis:Trans)	80:20	0:100
Lifetime (ns)	<0.7	1.74

Possible Selective Rotation of the Unsubstituted Phenyl group

$H_{3}C$ hv $S_{1} \text{ or } T_{1}$ $H_{3}C$	Solution CDCl ₃ / Hexane	Octa acid	
Chemical shift δ of CH_3	2.35 ppm	- 2.1 ppm	
Pseudo-photostationary state -Singlet (Cis:Trans)	85:15	85:15	
Photostationary state - Triplet (Cis:Trans)	82:18	86:14	
Lifetime (ns)	<0.7	0.94	

Location of methyl groups on the aryl ring makes a difference

$H_{3}C$			
Chemical shift δ of CH ₃ within Octa acid	- 2.3 ppm	- 1.6 ppm	0.8 ppm
Pseudo-photostationary state –Singlet (Cis: Trans)	20:80	85:15	85:15

The same photo-stationary states were also obtained starting from corresponding *cis* isomers in octa acid

Enhancement of fluorescence intensity of a GFP chromophore by encapsulation within OA

GFP, Roger Tsien

Torsional Rotation vs Pyramidalization

Azobenzenes form Complexes Similar to Stilbenes with OA

Photoisomerization of 4-MAB@OA₂ by UV-Vis:

Photoisomerization of 4,4'-DMAB@OA₂ by UV-Vis:

Torsional Rotation vs Pyramidalization

Zeolites

$M_x(AIO_2)_x$ (SiO₂)_y.ZH₂O

Entrance dia 7.4 Å Cage dia. 11.8 Å

Presence of exchangeable cations and well-defined confined space

Chiral inductor approach

Chiral induction: Solution vs. Zeolite

Chiral induction: Solution vs. Zeolite

Chiral induction within a modified zeolite

Cation Dependent Diastereomer Switch

Asymmetric Photoreactions Within Zeolites

Cation is the Key

- Chiral Induction Depends on
 - Nature of the Cation
 - Number of Cations (Si/Al ratio)
 - Water Content

Cation Effect Heavy Cations Enhance k_{isc} and k_p

Ability of zeolite supercage to induce spinorbit coupling depends on the cation

Atom	Ionic Radius of the Cation (Å)	Spin-Orbit Coupling ζ cm ⁻¹
Li	0.86 (+)	0.23
Na	1.12	11.5
К	1.44	38
Rb	1.58	160
Cs	1.84	370
Tl	1.40	3410
Pb	1.33 (2+)	5089

Room temperature phosphorescence of naphthalene included in MY zeolites

Room Temperature Phosphorescence from Diphenylpolyenes

Generation of Stable Organic Radical Cations at Room Temperature Within ZSM-5 Zeolites

Figure 2. Room temperature ESR spectra of the cation radicals of trans-stilbene, trans-stilbene-d₁₂ DPB, and DPOT included in Na-ZSM-5.

Absorption Spectra of Radical Cations

T. Shida, Electronic Spectra of Radical Ions, 1988

Absorption and Emission Spectra of Radical Cations

Generation of Stable Polythiophene Radical Cations at Room Temperature

Generation of Conducting Polymers

Heating TT with time

Table I.	Electronic	Absorption	Band Positions	for Oligomeric
Thiopher	les $(2 \leq n)$	≤ 9) Include	ed in Na-ZSM-	5°

oligomer chain length	$\hbar \omega_8$ (neutral)	2ħω ₀ (polaron)	ħω3 (bipolaron)	ħω ₁ (bipolaron)
2	300	407		
3	354	522		833
4	390	614	636	1046
6	434	775	600	1019
8			661	1383
9			761	1450

Importance of confined and well defined reaction space

> Role of weak interactions within a reaction cavity

The Medium is the Message

Understanding Media: The extensions of man Marshall McLuhan, 1962.

Crystals

Cyclodextrins

Zeolites

Octa acid

Photochemistry within a water-soluble organic capsule, V. Ramamurthy, *Acc. Chem. Res.*, *48*, 2904, **2015**.

Supramolecular Photochemistry in Solution and on Surfaces: Encapsulation and Dynamics of Guest Molecules, and Communication Between Encapsulated and Free Molecules V. Ramamurthy, S. Jockusch and M. Porel, *Langmuir*, **2015**, *31*, 5554-5570 (Feature review article)

Supramolecular photochemistry: From molecular crystals to water-soluble capsules V. Ramamurthy and S. Gupta, *Chem. Soc. Rev.*, **2015**, *44*, 119 -135

Supramolecular Photochemistry Concepts Highlighted with Select Examples V. Ramamurthy and B. Mondal *J. Photochem. Photobiol. C: Photochem. Rev.*, **2015**, *23*, 68-102

Supramolecular Photochemistry as a Synthetic Tool, V. Ramamurthy and J. Sivaguru, *Chem. Rev.*, **2016**, 116, 9914-9993 (Special issue on Photochemistry in Organic Synthesis)

Indebted to enthusiastic students and collaborators

