CHM 535/635 Molecular and Supramolecular Photochemistry

Absorption and Emission Radiative Transitions

Chapters 3 & 4 Principles of Molecular Photochemistry: An Introduction NJT, VR and JCS

Manifestations of Light-Matter Interactions

- Reflection
- Refraction
- Scattering
- Absorption

The Basic Laws of Photochemistry The First Law of Photochemistry: light must be absorbed for photochemistry exactly equal hv (Eq. 4.8). Drapper (1811-1 Grotthus The Second Law of Photochemistry: for each photon of light absorbed by a chemical system, only one molecule is activated for a photochemical Einstein Stark

Third law of photochemistry

Probability of light absorption is related to the energy gap and wavelength of light

The energy conservation rule (Eq. 4.8): There must be an exact matching of the energy difference that corresponds to the energy required for the transition (ΔE) between orbitals and the energy of the photon $(h\nu)$; that is, ΔE must

Grotthuss-Draper law

Stark-Einstein law

to occur.

reaction.

Fermi's Golden Rule

Bohr model couldn't predict why one spectral line is brighter than another.

A transition rate depends upon the strength of the coupling between the initial and final state of a system and upon the number of ways the transition can happen (i.e., the density of the final states).

Enrico Fermi Nobel Prize, 1938

The transition probability λ decides both absorption and emission probabilities. The general form of Fermi's golden rule can apply to atomic transitions, nuclear decay, scattering ... a large variety of physical transitions such as energy and electron transfer.

Chromophore	$\lambda_{max}(nm)$	E max	Transition type
C-C	<180	1000	σ,σ*
C=C	180	10,000	π,π*
C=C-C=C	220	20,000	π,π*
C=C-C=C-C=C	260	40,000	π,π*
C=O	280	20	n,π*
C=C-C=O	350	30	n,π*
C=C-C=O	280	10,000	π,π*
Benzene	260	200	π,π*
Pyrene	350	510	π,π*
Anthracene	380	10,000	π,π*

Radiative rate constant	$k_e^0 = 3 \times 1$ $1/\tau^0 = k_e^0 \sim$	$0^{-9}\overline{v}_0^2 \int \varepsilon d\overline{v}$ $\varepsilon_{\max} \Delta v^2 \sim 1$	$\cong \overline{\nu}_0^2 f$ $0^4 \varepsilon_{\max}$				
Experimental and Calculated Radiative Lifetimes for Singlet- Singlet Transitions							
Сотрог	ınd	$\tau^{0} (x \ 10^{9})$	τ (x 109)				
Anthracene		13.5	16.7				
Perylene ^c		4.1	4.6				
9,10-Dipheny	lanthracene	8.9	8.8				
Acridone		14.9	14.1				
Fluorescein		4.7	4.0				
9-Aminoacrie	dine	14.6	14.3				
Rhodamine B		6.0	6.0				
Acetone		10,000	1,000				
Perfluoroace	tone	10,000	5,000				
Benzene		140	600				

Pioneering Publications	5
[Contrastitute From the Gaussical Languages of the University of California] Reversible Photochemical Processes in Rigid Media. A Study of the Phosphorescent State By Glueser N. Lewis, David Lipson and Theodone T. Maoni	PARAMAGNETISM OF THE PROSPHORESCENT STATE CHEMICAL LABOLATORIS OF THE UNIVERSITY OF CALIFORNY BERKENY, CALIFORNY M. CALIFO
(Contremution from the Chemical Laboratory of the University of California) Phosphorescence and the Triplet State By Gilbert N. Lewis and M. Kasha (Contrestion from the Chemical Laboratory of the University of California)	Paramagnetic Resonance Absorption in Naphthalene in Its Phosphorescent State ³ Cores A. Hercomos, J., von Burt W. Mascer Barles Ferni Fuelback for Nadors Statics of Depotement Charles, University of Consec. Consec. Rised (Received August 8, 1958)
Phosphorescence in Finid Media and the Reverse Process of Singlet-Triplet Absorption By GILBERT N. LEWIS AND M. KASHA	Triplet States in Solution GRORGE PORTER AND MAURICE W. WINDBOR Department of Physical Chemistry, University of Combridge, Cambridge, England (Received August 19, 1955)
Photomagnetism. Determination of the Paramagnetic Susceptibility of a Dye in Its Phosphorescent State ⁴ G. N. Lawn, M. CANT, Ann M. Kanat Dipartment of Chambry Contains, Booker, California (Received Deember 15, 1946)	SENSITIZED PHOSPHORESCENCE IN ORGANI SOLUTIONS AT LOW TEMPERATURE ENROF TRANSPER BETWEEN THIFTY STATIS BY A TERMS AND V. EMELANY Photohemical Laboratory, Sociasi of Chemical Simone, Academy of Science of U.S.S.R.
PHOTOMAGNETISM OF TRIPLET STATES OF ORGANIC MOLECULES By Dx. D. F. EVANS PPyindi Chemistry Undernote, Oxford	Received 21st March, 1956

CLASSIC REFERENCES ON TRIPLET STATE AND HEAVY ATOM EFFECT 1. JACS., 63, 3005, (1941). 1. J. Chem. Phys., 29, 952 (1958) 2. JACS., 64, 1916, (1942). 2. JACS., 82, 5966 (1960) 3. JACS., 66, 2100, (1944). 3. J. Chem. Phys., **32**, 1261 (1960) 4. JACS., 66, 1579, (1944). 4. J. Mol. Spectroscopy, 6, 58 (1961) 5. JACS., 67, 994, (1945). 5. J. Phys. Chem., 66, 2499 (1962) 6. JACS., 67, 1232, (1945). 6. J. Chem. Phys., **39**, 675 (1963) 7. Chem. Rev., 47, 401 (1947) 7. J. Chem. Phys., 40, 507 (1964) 8. J. Chem. Phys., 17, 905 (1949) 8. Photochem. Photobiology, **3**, 269 (1964) 9. J. Chem. Phys., 17, 1182 (1949) 9. J. Chim. Phys., 61, 1147 (1964) 10. J. Chem. Phys., 17, 804 (1949) 10. Trans. Faraday Soc., 62, 3393 (1966) 11. J. Chem. Phys., **20**, 71 (1952) 11. Chem. Rev., 66, 199 (1966) 12. Nature, 176, 777, (1955). 12. J. Chem. Ed., 46, 2 (1969) 13. J. Chem. Soc., 1351, (1957). 13. JACS, **114**, 3883 (1992)

	VISCOSITY OF LOW TEMPERATURE GLASSES (Adapted from Greenspan and Fischer ²⁰⁸)		
	Solvent	Approximate viscosit in poise at - 180°C	
_	1-Propanol/2-propanol (2:3)	6×10^{12}	
	Ethanol/methanol	2×10^{12}	
	Ethanol/methanol + 4.5% water		
	Ethanol/methanol + 9% water	_ *	
	Iso-octane/isononane	3×10^{10}	
	Methylcyclohexane/cis/trans-decalin	1×10^{14}	
	Methylcyclohexane/toluene	7×10^{9}	
	Methylcyclohexane-isohexanes (3:2)	3×10^{6}	
	Methylcyclohexane/methylcyclopentane	2×10^{5}	
	Methylcyclohexane/iso-pentane		
	Methylcyclohexane-iso-pentane (1:3)	1×10^{3}	
	2-Methylpentane	7×10^{4}	
	2-Methyl tetrahydrofuran	4×10^{7}	
_	Ether/iso-pentane/ethanol (5:5:2)	9 × 10 ³	
•	Be chemically inert		
•	Have no absorption in the reg	ion of optical pum	
•	Have a large solubility for the	studied materia	
•	Be stable (don't crack) to the	action of light	

Intrinsic fluorophore and extrinsic fluorophore Intrinsic fluorophores are those which occur naturally Extrinsic fluorophores, fluorescence probes

Polarity Probe

Dipole Moment = The dipole moment of a molecule in S_1 is generally greater than that that of the same molecule in S_0

Solvent Polarity = The energy of S_1 after solvent reorganization generally decrease with solvent polarity

Emission Wavelength = The emission wavelength generally increases with solvent polarity

- H = Hexane CH = Cyclohexane T = Toluene
- EA = Ethyl acetate
- Bu = Butanol

12. Chemistry of vision involves 1. Cycloaddition reaction 2. Cis-trans isomerization 3. Reaction with oxygen 13. Photosynthesis is a process 1. by which camels get energy to survive in a desert 2. by which we gain energy to walk 3. by which plants generate energy for survival 14. Survival of the human civilization with enormous energy needs depends on 1. Emulating photosynthesis to make use of sunlight to generate energy 2. Making cheaper cars 3. Using coal instead of gasoline (petrol) to drive cars 15. Absorption and emission of molecules 1. Are generally separated by more than 20 kcal/mol 2. Absorption appears at longer wavelength than the emission 3. In most molecules absorption and emission overlap at 0-0 band

95