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Electron and Energy Transfer

Chapter 7 (pp.383-481)

Survival Strategy:  Photosynthesis

Artifical Photosynthesis: Solar Energy to Electrical 
Energy

PHOTOSYNTHESIS PHOTOVOLTAICS
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Electron Transfer-Phenomenon Electron Transfer-Orbitals

Electron and Hole

hole No hole: filled
hole

The term electron transfer is 
usually employed for single 
electron transfer involving LUs of 
the donor and acceptor; the term 
hole transfer is usually employed 
for electron transfer involving 
the HOs of the donor and 
acceptor

Hole and Electron Transfer

Hole transfere

In the physics literature, a half-
filled HO is considered a 
“positive hole” in the electronic 
framework of a molecule; 
∗R is viewed as simultaneously 
possessing both a positive hole 
(one electron in the half-filled 
HO) and one electron in the half-
filled LU.
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Electron Addition and Removal is Easier in the Excited State than 
in the Ground State

Remember

∆Get =   (IP)D – (EA)A 

Ground state
(gas phase)

*∆G    =     (IP)D - (EA)A  - E*D 

Excited state
(gas phase)

ΔGet = E1/2
ox (D)−E1/2

red (A)−Eexc (A)+ΔECoulombic

Excited state
In solution

Rehm-Weller Equation

The  free energy of electron transfer processes in solution can be estimated 
by two different approaches:

ØThe value of ∆G for the gas phase reaction is calculated using IP and EA 
and then corrected to take into account the solvation energies for all the 
participants (i.e. , *D, *A, D+ and A— in the electron transfer reaction.

ØThe electrochemical potentials for the oxidations E�(D+/D) and reductions 
E�(A/A–) in solution are measured and then employed to calculate ∆G 
directly for the solution electron transfer. 

ØThe key electrochemical parameters are more commonly available or can be 
determined using standard electrochemical techniques, such as cyclic 
voltammetry; as a result, the second approach is most commonly used. 

Gas Phase to Solution 
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LOW

Caution

Another important point in using electrochemical data is that one must 
employ the standard electrode to which the values of E�(D+/D) and 
E�(A/A–) refer. Both the standard hydrogen electrode and the standard 
calomel electrode and silver electrode are commonly used as standards.  
So care must be taken to know which is being used and not to mix data 
from the two standards unless appropriate corrections are made. 

Be careful about the reference electrode

It is very important to note that by convention in electrochemistry, both 
E�(D/D•+) and E�(A/A•−) are expressed as reductions (D•+/D and 
A/A•−). Both reactions are expressed as A + e→A•− and D•+ + e→D.  
Because of this convention, one must pay careful attention to the signs of 
E�(D•+/D) and E�(A/A•−) when computing the overall value of DG. 

Be careful about the sign



6/11/20

6

Solvent effect on electron transfer

CN

CN

OCH3

CN

OCH3

OCH3

Eox

1.84 V

--

--

1.38 V

1.10 V

Ered

–2.5 V

–1.98 V

–1.28 V

--

--

ΔGet = E1/2
ox (D)−E1/2

red (A)−E*(A)+ΔECoulombic
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Resource for  Electrochemical Redox Potentials 

CN
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ΔGet = E1/2
ox (D)−E1/2

red (A)−E*(A)+ΔECoulombic

Rehm-Weller Equation

D*  +  A

D.+ +  A.—

Free energy of activation expressed in terms of the free 
energy of reaction (DG) and free energy of activation (DG#) 

A. Weller

D. Rehm and A. Weller, Isr. J. Chem., 8, 259, 1970

Dependence of the electron transfer rate on the driving 
force DG0  and the free energy of activation DG‡

The value of ket reaches a plateau value of ~ 2 x 1010 M-1s-1 after an 
exothermicity of ~ -10 kcal mol-1 and the value of ket remains the diffusion 
controlled value to the highest negative values of  achievable. 

Rehm-Weller Plot

V. Balzani, et. al., JACS, 
100, 7219, 1978

C. R. Brock, T. J. Myers and  
D. G. Whitten, et. al., 
JACS, 97, 2909, 1975

H. Toma and C. Creutz , 
Inorganic Chemistry, 
16, 545, 1977

More Rehm-Weller Plots 

The Nobel Prize in Chemistry 1960 was awarded to Willard F. Libby 
"for his method to use carbon-14 for age determination in 
archaeology, geology, geophysics, and other branches of science".

Willard F. Libby

Mechanism of eT: Libby Model

W. F. Libby, J. Phys. Chem., 56, 863, 1952; J. Chem. Phys., 38, 420, 1963; 
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The electron jump from R (*Fe2+) to R•+ (Fe3+) 
is analogous to the electron jump from a HO 
to a LU that leads to formation of an 
electronically excited state. 

The electron jump is expected to occur 
“vertically” and to follow the Franck-Condon 
principle; the geometry of the products 
formed by an electron transfer would be the 
same as the geometry of the reactants. 

Libby Model

Two types of reorganization occur after the et: (1) an electronic and vibrational 
reorganization, termed internal molecular reorganization; and (2) a solvent reorganization 
associated with the solvent reorientation to accommodate the new electronic structures 
termed external solvent reorganization.  

Libby Model

Marcus Theory
R. A. Marcus, J. Chem. Phys., 24, 966, 1956.

R. A. Marcus and N. Sutin, Biochemica et Biophysica Acta, 
811, 265, 1985.  

R. A. Marcus,  Electron transfer Reactions in Chemistry: 
Theory and Experiment, (Nobel Lecture) Angew. Chem. Int. 
Ed.,32, 1111, 1993. 

R. A. MarcusRates are expected: 
² to be slow for weakly exothermic reactions, 
² to increase to a maximum for moderately exothermic 

reactions, and then 
² to decrease with increasing exothermicity for highly 

exothermic et reactions.



6/11/20

10

Evolution of Marcus model

ket = A exp-(DG‡/RT) 

R. A. Marcus, J. Chem. Phys., 24, 966, 1956.

Weller Model

Libby Model
Electron transfer is a two step process: 

(a) Electron transfer first with no change of nuclear positions (Franck-
Condon principle)

(b) Solvent reorganization

Marcus Model
The above two step model violates thermodynamic principle of conservation 
of energy.  Electron transfer follows reorganization.

The Marcus model

Arhenius

Classical Marcus

Semi-Classical Marcus
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The consequences of expressing the free energy of 
activation in terms of the driving force and  l

1. For an iso-energetic self-exchange reaction one obtains:

2. At this stage the reaction becomes barrierless and
proceeds at the maximum rate allowed by the pre-
exponential factor.

For DG° = - l one obtains DG# = 0

For DG° = 0 one obtains DG# = l/4

DG# = (DG° + l)2/4l

Predictions Marcus Prediction

ket = A exp-(DG‡/RT) 

∆G‡ = (DG0 + l)2/4l

The re-emergence of the activation barrier (D G‡)
at large negative DG0 values

Marcus prediction vs Weller’s experiments
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Electron Transfer Involves Two Steps Experimental conditions to observe the Marcus “inverted region”?

For most donor-acceptor (DA) systems the inverted region is 
obscured by the diffusion limit.

This can be circumvented by:
v freezing the donor-acceptor distribution (glassy medium)
v covalently linking the donor and the acceptor
v lowering the donor-acceptor interaction (electronic coupling V)  

so that the maximum rate for -DG0 = l is lower than the 
diffusion limit.

J. R. Miller, J. V. Beitz, and R. K. Huddleston, J. Am. Chem. Soc., 106, 5057, 1984.

J. R. Miller

Effect of Free Energy on Rates of Electron Transfer Between 
Molecules in Glass at 77 �K

G. Closs J. R. Miller
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G. Closs and J. R. Miller, Science, 240, 440-447 (1988)

J. R. Miller, L. T. Calcaterra and G. L. Closs, J. Am. Chem. Soc., 106, 3047-3049 
(1984) 

hν

D-bridge-A

ev
ol

vi
ng

 o
rb

ita
l 

ΔE

D*-b-A
D+.-b-A-.

ΔE = 0

D*-b-A
D+.-b-A-.
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2 At the crossing 
point (the barrier) 
there is an equal 
chance of finding the 
electron on both sides; 
ΔE = 0, 
the electron is 
formally transferred.

1 After excitation the 
electron is still mainly 
localised on D, but 
there is already a small 
probability on A.

3 After relaxation 
into the well of the 
CT state the 
probability to find the 
electron on the A side 
is highest.  ΔE has 
again increased 
sharply.

electron probability density 
on the donor (D) and 
acceptor (A) site

nuclear co-ordinates & 
visualisation of 
the changes of ΔE

1

2

3

D-b-A
hν

D*-b-A

D+.-b-A-.

1

3

.. .
. ..... ......

...

2
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Photo induced electron transfer: how is the electron transferred?

The Nobel Prize in Chemistry 1992

The Nobel Prize in Chemistry 1992 was awarded to Rudolph 
A. Marcus "for his contributions to the theory of electron 
transfer reactions in chemical systems".

The Nobel Prize in Chemistry 1983 was 
awarded to Henry Taube "for his work on the 
mechanisms of electron transfer reactions, 
especially in metal complexes".
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J. W. Verhoven M. N. Paddon-Row

N. J. TurroJ. K. Barton

D. GustN. MatagaS. Farid I. Gould

R. Marcus J. Miller G. Closs H. Gray T. Meyer

F. D. Lewis G. SchusterM. Wasielewski B. Giese

The re-emergence of the activation barrier (D G‡)
at large negative DG0 values

Arhenius

Classical Marcus

Semi-Classical Marcus

What is l ?
Total reorganization energy is composed of the solvation component louter  
(or lsol) and the inner or internal component, linner  (or lint)

l =   linner +    louter

The intramolecular component is most generally expressed as a summation over  all vibrational modes 
fi of the reactant state and product state which undergo change during the electron transfer reaction. 
The Dqi is the displacement caused by the electron transfer reaction

λinner =
fi
R fi

P

fi
R + fi

P

!

"
#

$

%
&

i
∑  Δqi

The solvent component is usually described in terms 
of dielectric continuum theory

λouter = e
2 1
2rD

+
1
2rA

−
1
rAD

"

#
$

%

&
'
1
ε
−
1
εs

"

#
$

%

&
' rAD = rA + rD

where rA and rD are the atomic radii of A and D, respectively, e is the 
dielectric constant of the medium that responds to the electronic 
polarization (e is the square of the refractive index), and es is the 
static dielectric constant or relative permittivity corresponding to the 
solvent dipole. 
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Classical Marcus equation

What is V ?

Strong coupling V
Adiabatic

Weak coupling V
Non-adiabatic

Zero coupling V
Diabatic

Forward and back electron transfers have different DG0 

and therefore different rates CS and CR

€ 

D+ + A– kbet" → " " D + A  *  

Back electron transfer & Generation of excited states

When back electron transfer to the ground state 

D•+ + A•- ® D + A DG0et   large

is in the Marcus inverted region and is therefore inhibited; 

the formation of the excited products 

D•+ + A•- ® *D + A          DG0*et   small

may be kinetically preferred because of the smaller DG0*et
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Forward and backward electron transfer rates 
are not the same: Charge separation 

Easier to observe Marcus inversion during back 
electron transfer process

Caution: The internal reorganization 
energy and the electronic coupling V 
are generally not the same for charge 
separation and recombination.

As a result, the charge separation and 
recombination rates in the same 
donor-acceptor system usually do not 
belong to the same Marcus curve.

Dynamics of Bimolecular Photoinduced Electron-Transfer Reactions, I. R. Gould and 
S. Farid, Acc. Chem. Res. 1996, 29, 522-528.

Bioapplications, Light emitting diodes (TV, Computerr, Cell phone screens)

Excited state production through back electron transfer

D* could be 
singlet or triplet

3(D•+,A•--)   ® 1(D,A)* 

spin forbidden 

3(D•+,A•-)   ® 3(D,A)* 

spin allowed 

D*3 or A*3 formed

D (S1)
Singlet stateSinglet ion pair

CR

Triplet ion pair

Making triplets from photo-generated charges: observations, mechanisms and theory, D. J. Gibbons, A. Farawar, 
P. Mazzell, S. Leroy-Lhez and René M. Williams, Photochem. Photobiol. Sci., 2020, 19, 136
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Triplet production during back electron transfer
Charge separation and Photosynthesis

Charge Separation: Diads, Triads and Tetrads

Molecular Mimicry of Photosynthetic Energy and Electron Transfer, D. Gust,  T. A. Moore, and A. L. Moore, 
Acc. Chem. Res., 1993, 26, 198

Cascade electron 
transfer in a triad

Devens Gust

Mimicking Photosynthesis,  D. Gust, T. A. Moore, 
Science 1989, 244, 35-41.

Solar Fuels via Artificial Photosynthesis, D. Gust, T. A. 
Moore, and A. L. Moore, Acc. Chem. Res., 2009, 42, 
1890
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C(P°+)C60°–

Triads

F =  0.96
t  ~ 0.05 sec

Only decay pathway —
to excited triplet of 
carotene

Cascade electron transfer in a tetrad

Lifetime: 0.38 s

Role of Spin: Triplet ion pairs have longer lifetime

Benzophenone 
as triplet 
sensitizer

Charge separation and artificial photosynthesis

Realizing Artificial Photosynthesis, D. Gust, T. A. Moore, and A. L. Moore, 

Faraday Transactions, 2012, 155, 9-26
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Electron Transfer at a Distance
No need for Donor & Acceptor Orbitals to Overlap

Electron transfer through s bonds

On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer 
states, Jan W. Verhoeven, J. Photochem. Photobio. C: Photochem. Rev., 2006, 7, 40–60

Investigating Long-Range Electron-Transfer Processes with Rigid, Covalently Linked Donor-( Norbornylogous
Bridge)-Acceptor Systems, M. Paddon-Row, Acc. Chem. Res. 1994, 27, 18-25

Long distance electron transfer and the distance 
dependence of the coupling element VDA

J. W. Verhoven

M. N. Paddon-Row

1/kcr
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D A
r

Extension of electron density outside the orbital  
Electron transfer via tunneling

Difference between super-exchange and 
molecular wire 

Although the available orbitals of the solvent or spacer lie at energies incompatible 
with intermediate states participating in mediated electron transfer, their presence 
provides an electronic perturbation of the donor and acceptor orbitals and 
enhanced electron transfer rates compared with the interactions occurring over the 
same spatial separation with an intervening vacuum.

Through-bond interactions in donor-acceptor systems separated by solvent or by 
covalently bound spacers. 

The propagation of electronic coupling along the bridging material (aka 
“superexchange” leads to exponential distance dependence.

The initial coupling into the bridge depends on the energy gap between the 
relevant orbitals of the donor (acceptor) and the bridge, DEDB and DEBA , as well 
as stereoelectronic factors.

ket = k0exp[-b(RDA - R0)] 

Electron transfer

Hole transfer
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b spacer (Å-1)
2.2 vacuum
1 alkanes 
0.35 polyphenyl
0.1 polyacetylene
0.02 poly-p-phenylene-

vinylene

How does the rate of electron transfer change with increasing distance 
between the two groups?

ket = k0exp[-b(RDA - R0)] 

Excited state lifetimes of the quenched unit and
electron transfer rate constants

      τ (ps)      kel (s-1)
OsII(phH)2OsIII ≤ 5 ≥ 2 x1011

OsII(phH)3OsIII  8 1.2 x1011

OsII(phH)4OsIII 34 2.9 x1010

OsII(ph)3OsIII  17 5.8 x1010

OsII(ph)5OsIII 340 2.7 x109

OsII(ph)7OsIII 2900 9.4 x107

OsII(flu)OsIII 35 2.9 x1010 N

N

N

N

N N

N

N

N

N

N N

N

N

N

N

N N

N

N

N

N

N N

N

N

N

N

N N

N

N

N

N

N N
R

R

R= hexyl

Distance dependance of electron transfer 
b for polyphenyl b = 0.32  Å-1

ket = k0exp[-b(RDA - R0)] 

G. Closs and J. R. Miller, Science, 240, 440-447 (1988)

J. R. Miller, L. T. Calcaterra and G. L. Closs, J. Am. Chem. 
Soc., 106, 3047-3049 (1984) 

G. Closs

J. R. Miller

Electron transfer through s bonds

ket = k0exp[-b(RDA - R0)] 
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Long distance electron transfer in proteins

Harry B. Gray 

Wenger, Leigh, Villahermosa, Gray, Winkler, Science, 2005; 307, 99-102.

Activationless electron tunneling through various media: vacuum (black, β = 2.9–4.0 
Å-1), MTHF glass (violet, β = 1.57–1.67 Å-1), aqueous glass (cyan, β = 1.55–1.65 

Å-1), and toluene glass (green, β = 1.18–1.28 Å-1). 

Gray H B , and Winkler J R PNAS 2005;102:3534-3539

©2005 by National Academy of Sciences

Wenger, Leigh, Villahermosa, Gray, Winkler, Science, 2005; 307, 99-102.

Long distance electron transfer in general

G. Mc Lendon, Acc. Chem. Res. 1988, 21, 160-167

J. K. Barton

N. J. Turro
Science, 1988, 241,1645-1649

J. Am. Chem. Soc. 1986, 108, 6391-6393
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b 0.88 /Å
(Harriman) 

Donors* Acceptor
Long-range photoinduced electron transfer through a DNA helix
C.J. Murphy, M.R. Arkin, N.D. Ghatlia, S.H. Bossmann, N.J. Turro and J.K. Barton, 
Science, 1993, 262, 5136 

The first DNA assembly in which 
long-range oxidative damage to 
guanine bases was observed 
using a tethered photooxidant.

Damage to DNA by the 
photooxidant [Rh(phi)2(bpy‘)]3+

can occur by two distinct paths. 
After irradiation at high energy, 
a short-range reaction, which 
identifies the site of 
intercalation, occurs (left side). 

Long-range CT, which promotes 
oxidative damage (Gox) at a 
distance, occurs after low 
energy excitation (right side). 
These two mechanisms allow for 
clear delineation of site of 
radical generation and site of CT 
damage enabling long-range 
chemistry to be identified.

Schematic representation of a DNA duplex with a tethered rhodium photooxidant containing six 5‘-GG-3‘ 
guanine doublets up to 200 Å from the metallo-intercalator binding site. Oxidative damage at each of the 
guanine doublet sites, as a result of photoexcitation of the rhodium intercalator, has been demonstrated.

b < 0.2 /A°

e transfer > 200 Å

https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22C.J.+Murphy%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22M.R.+Arkin%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22N.D.+Ghatlia%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22S.H.+Bossmann%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22N.J.+Turro%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22J.K.+Barton%22
https://go-gale-com.access.library.miami.edu/ps/aboutJournal.do?contentModuleId=EAIM&resultClickType=AboutThisPublication&actionString=DO_DISPLAY_ABOUT_PAGE&searchType=AdvancedSearchForm&docId=GALE%7C1300&userGroupName=miami_richter&inPS=true&rcDocId=GALE%7CA14784613&prodId=EAIM&pubDate=119931112
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(a) Superexchange: charge tunnels form the 

donor to the acceptor through the bridge in a 

nonadiabatic process. An exponential decrease in 
rate with increasing length of bridge is 

predicted. 

(b) Hopping: charge occupies the bridge in 
traveling from donor to acceptor by hopping 

between discrete molecular orbitals on the 
bridge. If the rate of charge migration is faster 

than trapping, the charge should be able to 

migrate over long distances before getting 
trapped. 

(c) Domain Hopping: charge occupies the bridge 

by delocalizing over several bases, or a domain. 
This domain hops along the bridge to travel from 

donor to acceptor. As in a pure hopping 
mechanism, the charge should be able to travel 

long distances before getting trapped.

Bernd Giese

Electron transfer (depicted as arrows) from the nearest guanine to the sugar radical 
cation in seven different strands. The diagram shows the exponential distance 
dependence (Dr) of the electron-transfer rate (kET).

Charge injection into a single G (12 to 14), charge transport to the complementary, 
radiolabeled strand (14 to 15), and charge transport from a single G +° to a GGG sequence 
(15 to 16). This assay is used to determine the relative rates and efficiencies of the charge 
transport from a single G+° to a GGG sequence.

Hopping Mechanism

https://www-sciencedirect-com.access.library.miami.edu/science/article/pii/S0968089606004482
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Mechanism Shift

Distance-dependent electron transfer in DNA 
hairpins

F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. D. Greenfield and M. R. 
Wasielewski,  Science, 1997, 277, 673-676.

F. D. Lewis

Tracking Photoinduced Charge Separation in DNA: from Start to Finish, F. D. Lewis, R. M. Young and M. R. Wasielewski, Acc. Chem. Res. 
2018, 51, 1746

Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins,  F. D. Lewis, R. L. Letsinger and M. R. 
Wasielewski, Acc. Chem. Res. 2001, 34, 159.

b 0.64 /Å
(Lewis)

b < 0.2 /A°
(Barton) 

b 1.0 /A°
(Giese) 
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Superexchange Hopping

Domain hopping 

Very long-distance charge transport through DNA is possible. In 
these systems, the charge migrates through DNA by a hopping 
process. Each hopping step depends strongly upon the hopping 
distance. Nevertheless, very long-distance charge transport is 
possible because the total distance is split up and the largest step 
becomes rate determining.

B. Geise, Acc. Chem. Res. 2000, 33, 631-636

Long distance electron transfer in DNA

Thus, efficient long-distance electron transfer may be achieved in 
DNA without the need for a new paradigm.

F. D. Lewis, -----M. R. Wasielewski, J. Am. Chem. Soc. 2000, 122, 2889.

DNA Is Not a Molecular Wire:  Protein-like Electron-

Transfer Predicted for an Extended π-Electron System

S. Priyadarshy, S. M. Risser and  D. N. Beratan
J. Phys. Chem. 1996, 100, 17678-17682

DNA: insulator or wire?

D. N.Beratan, S. Priyadarshy and S. M.Risser
Chemistry & Biology, 1997, 4, 3-8

Long-range photoinduced electron transfer through a DNA helix
C.J. Murphy, M.R. Arkin, N.D. Ghatlia, S.H. Bossmann, N.J. Turro and J.K. Barton, 
Science, 1993, 262, 5136 

Long distance electron transfer in DNA Solvent mediated electron transfer
Electronic and Steric effect

Electronic
Strong coupling; small 1/V

Steric

Zimmt, Waldeck et.al., J. Phys. Chem. A, 2002, 106, 5288

https://pubs-acs-org.access.library.miami.edu/action/doSearch?field1=Contrib&text1=Frederick+D.++Lewis
https://pubs-acs-org.access.library.miami.edu/action/doSearch?field1=Contrib&text1=Michael+R.++Wasielewski
https://pubs-acs-org.access.library.miami.edu/action/doSearch?field1=Contrib&text1=S.++Priyadarshy
https://pubs-acs-org.access.library.miami.edu/action/doSearch?field1=Contrib&text1=S.+M.++Risser
https://pubs-acs-org.access.library.miami.edu/action/doSearch?field1=Contrib&text1=D.+N.++Beratan
https://www.sciencedirect.com/science/article/pii/S1074552197902301
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22C.J.+Murphy%22
https://go-gale-com.access.library.miami.edu/ps/advancedSearch.do?method=doSearch&searchType=AdvancedSearchForm&userGroupName=miami_richter&inputFieldNames%5b0%5d=AU&prodId=EAIM&inputFieldValues%5b0%5d=%22M.R.+Arkin%22
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The data shown in the Figure were 
discussed with Rudy Marcus. The 
excitement was dashed, however, when 
Marcus correctly pointed out that the data 
implied a reorganization energy of nearly  
2 eV.  At that time, the best estimates for 
reorganization energies came from studies 
of self-exchange reactions, for which 
values of ca. 0.5- 0.7 eV were typical in 
acetonitrile. The fact that the return-
electron-transfer data suggested a value 3-
4 times larger shed doubt on the 

interpretation.

I. Gould & S. Farid, Acc. Chem. Res., 

1996, 29, 522.
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Electron transfer across a molecular wall
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Laser flash photolysis of trans-stilbene@OA complex and methylpyrolium salt
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Fluorescence titration of C153@OA2 with MV2+ and BV2+
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Locations of donor and acceptor during electron transfer
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Electron transfer across molecular wall

D A

*

V =  675 cm−1 

Λ ≈ 0.18 eV

Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent 
Organic Polyhedron ina Low-Dielectric Medium, J. Am. Chem. Soc. 2017, 139, 4286−4289
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Library of Cationic Organic Dyes for Visible-Light-Driven Photoredox
Transformations, S. P. Pitre, C. D. McTiernan, J. C. Scaiano, ACS Omega 2016, 1, 66-76

Resource for  Electrochemical Redox Potentials 

Experimental and Calculated Electrochemical Potentials of Common Organic Molecules 
for Applications to Single-Electron Redox Chemistry
H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett, 2016, 27, 714–723
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Resource for  Electrochemical Redox Potentials 

Chapter 7

The catalyst electrode, 
a NiFe layered
double hydroxide, 
(LDH) exhibits high activity 
toward both the oxygen 
and hydrogen evolution
reactions in 
alkaline electrolyte.

Perovskite solar Cell 
0.318 cm2

catalysts
~5 cm2

Developing a scalable artificial photosynthesis
technology through nanomaterials by design
Nathan S. Lewis
Nature Nanotechnology 2016, 11, 1010–1019

The photoanode material absorbs blue 
light and effects water oxidation. 
The photocathode material absorbs red 
light and drives the reduction of water 
or carbon dioxide. The photoanode and 
photocathode material are in ohmic 
contact, and both photoelectrodes are 
decorated with catalysts for the reaction 
of interest. The membrane allows for the 
transfer of ions and separates the 
products.

https://www.nature.com/articles/nnano.2016.194
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Solar Fuels and Solar Chemicals Industry
Daniel G. Nocera
Acc. Chem. Res. 2017, 50 (3), 616-619
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