

Manifestations of Light-Matter Interactions

- Reflection
- Refraction
- Scattering
- Absorption

Why are most plants green?

Chlorophyll absorbs in the red and blue, and hence reflects in the green.

Colocasia Esculenta "Black Magic"

It would seem that leaves should be **black** in order to more efficiently absorb all of the sun's light spectrum.

The Basic Laws of Photochemistry

Grotthuss-Draper law

The First Law of Photochemistry: <u>light</u> <u>must be absorbed for photochemistry</u> <u>to occur</u>.

John William Draper (1811-1: Drapper

Stark-Einstein law

The Second Law of Photochemistry: for <u>each photon</u> of light absorbed by a chemical system, <u>only one molecule</u> is activated for a photochemical reaction.

Grotthus

Einstein

Third law of photochemistry Probability of light absorption is related to the energy gap and wavelength of light. The energy conservation rule (Eq. 4.8): There must be an exact matching of the energy difference that corresponds to the energy required for the transition (ΔE) between orbitals and the energy of the photon (hv); that is, ΔE must exactly equal hv (Eq. 4.8). $R^* - \Psi_2$ $\Delta E = E_1 - E_2 = hv$ $v = (E_1 - E_2)/h$ $B - \Psi_1$

Interaction Between Photon and Electron

~	•		
Chromophore	λ _{max} (nm)	8 _{max}	Transition type
C-C	<180	1000	σ,σ*
C=C	180	10,000	π,π*
C=C-C=C	220	20,000	π,π*
C=C-C=C-C=C	260	40,000	π,π*
C=O	280	20	n,π*
C=C-C=O	350	30	n,π*
C=C-C=O	280	10,000	π,π*
Benzene	260	200	π,π*
Pyrene	350	510	π,π*
Anthracene	380	10,000	π,π*

Radiative rate constant	$k_e^0 = 3 \times 1$	$10^{-9}\overline{v}_0^2\int \varepsilon d\overline{v}$	$\approx \overline{v}_0^2 f$				
	$1/\tau^{0} = k_{e}^{0}$	$\sim \varepsilon_{\rm max} \Delta v^2 \sim 1$	$0^4 \varepsilon_{\text{max}}$				
Experimer	Experimental and Calculated Radiative Lifetimes for Singlet- Singlet Transitions						
Compo	und	$\tau^{0} (x \ 10^{9})$	τ (x 10 ⁹)				
Anthracene		13.5	16.7				
Perylene ^c		4.1	4.6				
9,10-Diphenylanthracene		8.9	8.8				
Acridone		14.9	14.1				
Fluorescein		4.7	4.0				
9-Aminoacridine		14.6	14.3				
Rhodamine	Rhodamine B		6.0				
Acetone	Acetone		1,000				
Perfluoroace	tone	10,000	5,000				
Benzene		140	600				

CLASSIC REFERENCES ON TRIPLE	T STATE AND HEAVY ATOM EFFECT
1. JACS., 63 , 3005, (1941).	1. J. Chem. Phys., 29 , 952 (1958)
2. JACS., 64 , 1916, (1942).	2. JACS., 82, 5966 (1960)
3. JACS., 66, 2100, (1944).	3. J. Chem. Phys., 32 , 1261 (1960)
4. JACS., 66, 1579, (1944).	4. J. Mol. Spectroscopy, 6, 58 (1961)
5. JACS., 67, 994, (1945).	5. J. Phys. Chem., 66, 2499 (1962)
6. JACS., 67 , 1232, (1945).	6. J. Chem. Phys., 39 , 675 (1963)
7. Chem. Rev., 47 , 401 (1947)	7. J. Chem. Phys., 40, 507 (1964)
8. J. Chem. Phys., 17 , 905 (1949)	8. Photochem. Photobiology, 3, 269 (1964)
9. J. Chem. Phys., 17, 1182 (1949)	9. J. Chim. Phys., 61 , 1147 (1964)
10. J. Chem. Phys., 17, 804 (1949)	10. Trans. Faraday Soc., 62, 3393 (1966)
11. J. Chem. Phys., 20 , 71 (1952)	11. Chem. Rev., 66, 199 (1966)
12. Nature, 176, 777, (1955).	12. J. Chem. Ed., 46, 2 (1969)
13. J. Chem. Soc., 1351, (1957).	13. JACS, 114, 3883 (1992)

(Adapted from Greenspan and Fischer ²⁰⁸)		
Solvent	Approximate viscosit in poise at - 180°C	
1-Propanol/2-propanol (2:3)	6 × 10 ¹²	
Ethanol/methanol	2×10^{12}	
Ethanol/methanol + 4.5% water		
Ethanol/methanol + 9% water	_	
Iso-octane/isononane	3×10^{10}	
Methylcyclohexane/cis/trans-decalin	1×10^{14}	
Methylcyclohexane/toluene	7×10^{9}	
Methylcyclohexane-isohexanes (3:2)	3×10^{6}	
Methylcyclohexane/methylcyclopentane	2×10^{5}	
Methylcyclohexane/iso-pentane		
Methylcyclohexane-iso-pentane (1:3)	1×10^{3}	
2-Methylpentane	7×10^{4}	
2-Methyl tetrahydrofuran	4×10^{7}	
Ether/iso-pentane/ethanol (5:5:2)	9×10^{3}	

Nikon MicroscopyU www.microscopyu.com/galleries/confocal