

	$\Phi_{\rm fl}$	E _{S1} , kcal/mol	E _{S₂} , kcal/mol	ΔE , kcal/mol
C C	0.058	36.3	77.0	40.9
\bigcirc	0.031	40.9	80.9	40.0
$\not \sim$	0.014	39.5	77.8	38.3
$\hat{\mathbb{Q}}$	0.0081	42.6	79.5	36.9
	0.0034	42.9	77.5	34.6
\bigcirc	~10 ⁻⁴	44.3	77.2	32.9
∖ CO₂Me	1			1

Table 5.4 Some Report phorescence Radiativ phorescence Yields ^a	presenta ⁄e Rates	ative Values , Intersystem	of Triplet Er Crossing Rat	ergies, Pho tes, and Pho	 Isotope Effect on Rate of T₁ to S₀
Molecule	E_{T}	$k_{\rm P}$	k _{TS}	Φ _P	
Benzene- h_6	85	~0.03	0.03	0.20	
Benzene- d_6	85	~ 0.03	< 0.001	~ 0.80	
Naphthalene-h ₈	60	~ 0.03	0.4	0.05	
Naphthalene-d ₈	60	~ 0.03	< 0.01	~ 0.80	
(CH ₃) ₂ C=O	78	~ 50	1.8×10^{3}	0.043	
$(CD_3)_2C=O$	78	~ 50	0.6×10^3	0.10	
a. In organic solver C-H stretch C-D stretch	ts at 771 3000 cr 2100 cr	S. E _T in kcal f n ⁻¹ n ⁻¹ Higher v level net match; j slow dec	mol ⁻¹ , k, in s ⁻ /ibrational eded to poor overlap cay, large Φ _P	1. potential energy	T ₁ T _m S ₀
					nuclear configuration

In aromatics because of the large S₁ to S₀ energy gap internal conversion does not compete with k_{ISC} and k_{F}

Table 4.2 Quantum yields for fluorescence $(S_1 \rightarrow S_0 + hv)$ and intersystem crossing $(S_1 \rightarrow T_1)$ for some aromatic hydrocarbons in ethanol solution (Data from Birks, J. B. (ed.) (1975). Organic molecular photophysics, Vol. 2, Tables 2.6 and 3.4. Wiley, London)

Compound	$oldsymbol{\phi}_{ ext{f}}$	$\phi_{ m ISC}$	$\phi_{\rm f} + \phi_{\rm ISC}$
Benzene	0.04	0.15	0.19 (exception)
Naphthalene	0.80	0.21	1.01
Fluorene	0.32	0.68	1.00
Anthracene	0.72	0.32	1.02
Tetracene	0.66	0.16	0.82
Phenanthrene	0.85	0.13	0.98
Pyrene	0.38	0.65	1.03
Chrysene	0.85	0.17	1.03

For large aromatic molecules the sum of the quantum yields of fluorescence and ISC is one i.e., rate of internal conversion is very slow with respect to the other two (**Ermolaev's rule**).

Spin interconversion in one spin system s_1^{α} α Hi $\mathbf{H_{i}}$ Hi S_z **S₁** and **H_i** uncoupuled $\mathbf{S_1}$ and $\mathbf{H_i}$ precess about resultant $\mathbf{S_1}$ and $\mathbf{H_i}$ coupuled to yield the resultant $\mathbf{S_1} + \mathbf{H_i}$ S₁^o Hi S_{z} H_x or H_y s_1^{β} Hi . β α_ α. Zero Field 56

Summary

- The strength or energy (E_{SO}) of spin-orbit coupling is directly proportional to the magnitude of the magnetic moment due to electron orbital motion, μ_L (a variable quantity depending on the orbit), and the electron spin, μ_S (a fixed quantity).
- Spin-orbit coupling in organic molecules will be effective in inducing transitions between different spin states if one (or both) of the electrons involved approaches a "heavy" atom nucleus that is capable of causing the electron to accelerate and thereby create a strong magnetic moment as the result of its orbital motion for a one electron atom, ζ_{SO} ~ Z⁴).
- For maximum effect of the nuclear charge, the electron must be in an orbital that approaches the nucleus closely, i.e., an orbital with some s-character, since s-orbitals have a finite probability of being located near or even in the nucleus!

65

65

Spin-Orbit Coupling and Heavy Atom Effect

Field at a molecular level is generated from the *orbital motion* of the electron around the nucleus.

$$\hat{H}_{SO} = \zeta l \cdot s$$

$$\zeta_{n,l} \propto \frac{Z^4}{n^3 l(l+1/2)(l+1)}$$

The Spin-Orbit coupling constant depends on the fourth power of the atomic number and its effect is very large for heavy atoms.

Atom	number	ζ (kcal mol ⁻¹)	Atom	number	ζ (kcal mol ⁻¹)
Cc	6	0.1	Ι	53	14.0
N ^c	7	0.2	Kr	36	15
O ^c	8	0.4	Xe	54	28
F ^c	9	0.7	Pb	82	21
Si ^c	14	0.4	Hg	80	18
P ^c	15	0.7	Na	11	0.1
Sc	16	1.0	K	19	0.2
Cl ^c	17	1.7	Rb	37	1.0
Br	35	7.0	Cs	55	2.4

Spin-orbit coupling energies for selected atoms

(molecular) or <u>external</u> (supramolecular).

Spin-Orbit Coupling and Heavy Atom Effect Field at a molecular level is generated from the *orbital motion* of the electron around the nucleus. $\hat{H}_{SO} = \xi l \cdot s$ $\zeta_{n,l} \propto \frac{Z^4}{n^3 l(l+1/2)(l+1)}$ The Spin-Orbit coupling constant depends on the fourth power of the atomic number and its effect is very large for heavy atoms.

				TAB	LE 7.2					
		:	opectroscop	ic Data on	Group IV	Tetraphenyls ^{α}				_
Molecule	Fluorescence band maximum (Å)	Phosphorescence band maxima (Å)	Φ_P/Φ_F	7 p (sec) b	τ_P (sec) c	$(cm^{-1})^{2d}$	$\sum_{K} \zeta_{K}^{2}$ $(cm^{-1})^{2 r}$	$\tau_P (\text{sec})^f$	k _{ISC} (sec ⁻¹) ^g	
$\frac{C(C_8H_5)_4}{Si(C_6H_5)_4}$ $\frac{Ge(C_8H_5)_4}{Sn(C_6H_5)_4}$ $\frac{Sn(C_6H_5)_4}{Pb(C_6H_5)_4}$	3200 3100 3200 3200	4500, 4700, 5100 4300, 4600 4500, 4700, 5100 4500, 4700 4250, 4550	≤ 0.1 0.1 1 10 $\gg 10$	2.9 1.1 0.055 0.003 (0.0008)	 0.003 0.0006 0.00008	$\begin{array}{c} 7.84 \times 10^2 \\ 2.02 \times 10^4 \\ 7.74 \times 10^5 \\ 4.39 \times 10^3 \\ 5.32 \times 10^7 \end{array}$	$\begin{array}{c} 5.49 \times 10^3 \\ 2.49 \times 10^4 \\ 7.79 \times 10^5 \\ 4.39 \times 10^6 \\ 5.32 \times 10^7 \end{array}$	= 2.9 0.66 0.021 0.0038 0.00031	10 ⁶ -10 ⁷ 10 ⁸ 10 ⁹ 10 ¹¹	
		^a All data refe from LaPaglia ^b Phosphoresco. ^c Calculated fr ^d Spinorbit co Ge(I), Sn(I), a ^e Sum of squared from Calculated f = 2.9 sec (K h ^g Obtained us to be wroard)	r to glassy (11). ence emissio om $T_1 \leftarrow S$ upling facto and Pb(I), re- so of spinorb om the ec- ere refers to ng Eq. 7.15	solutions a n data. a absorption rs squared spectively. it coupling f uation τ_{p}^{0} 0 C, Si, Ge, 5 and the a	t 77°K; the n data. for the np^2 factors, ξ_{np}^2 , c $= \tau_p^0 [C(C_8H$ Sn, and Pb). pproximatio	experimental disconfigurations of over all atoms in ${}_{8\lambda_{1}l_{K}^{2}/\ell_{K}^{2}}$, with n $k_{QP} \sim 0$ (wh	of C(1), Si(1), the molecule. $\tau_2^{0} [C(C_6H_5)_d]$ ich is known			9

F		on Raphinglene	Derivatives ^a	-		-
Molecule (cm ⁻¹)	$P_{0,0}$ (cm ⁻¹) Φ_F	Φ_P	Φ_P/Φ_F (approx.)	τ _P (sec)	k_{ISC} (sec ⁻¹)	k _F (sec ⁻¹)
thalene 31750 thylnaphthalene 31600 droxynaphthalene 31600 oronaphthalene 313600 monaphthalene 31280 onaphthalene	$\begin{array}{cccc} 21250 & 0.55 \\ 21000 & 0.85 \pm 0.19 \\ 20600 & 0.76 \pm 0.04 \\ 21150 & 0.84 \pm 0.08 \\ 20700 & 0.058 \pm 0.005 \\ 20650 & 0.0016 \pm 0.0005 \\ 20500 & <0.0005 \end{array}$	$\begin{array}{c} 0.051 \pm 0.003 \\ 0.044 \pm 0.013 \\ 0.036 \pm 0.004 \\ 0.056 \pm 0.009 \\ 0.30 \pm 0.06 \\ 0.27 \pm 0.04 \\ 0.38 \pm 0.06 \end{array}$	0.093 0.053 0.047 0.068 5.2 164 >1000	$\begin{array}{ccc} 2.3 & \pm \ 0.1 \\ 2.1 & \pm \ 0.1 \\ 1.9 \\ 1.5 \\ 0.29 & \pm \ 0.01 \\ 2.0 & \times \ 10^{-2} \\ 2.0 & \times \ 10^{-3} \end{array}$	$ \begin{array}{c} \sim 10^{5} \\ \sim 2 \times 10^{5} \\ \sim 2 \times 10^{5} \\ \sim 2 \times 10^{5} \\ \sim 1.5 \times 10^{7} \\ \sim 5 \times 10^{8} \\ > 3 \times 10^{9} \end{array} $	$\begin{array}{c} \sim 10^{8} \\ \sim 3 \times 10^{6} \\ \sim 3 \times 10^{8} \\ \sim 3 \times 10^{8} \\ \sim 3 \times 10^{6} \\ \sim 3 \times 10^{6} \\ \sim 3 \times 10^{8} \\ \sim 3 \times 10^{8} \end{array}$

Conservation of energy and angular momentum (spin & orbit coupling)

Spin change will occur at a place where the energies of singlet and triplet are identical. Occurs at curve crossing.

Spin-orbit coupling in organic molecules will be effective in inducing transitions between states of different spin if a " $p_x \rightarrow p_y$ " orbital transition *on a single atom* is involved in the electronic transition. This orbital transition provides both a means of conserving total angular momentum during the transition and also a means of generating orbital angular momentum that can be employed in spin-orbit coupling. This works in the case of $n\pi^*$ state.

carions	is the neavy arc	m per luber
Atom	Ionic Radius of the Cation (Å)	Spin-Orbit Coupling ζ cm ⁻¹
Li	0.86 (+)	0.23
Na	1.12	11.5
К	1.44	38
Rb	1.58	160
Cs	1.84	370
TI	1.40	3410
Pb	1.33 (2+)	5089

